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Preface

This book (CS:APP) is for programmers who want to improve their skills by learning what is going on
“under the hood” of a computer system.

Our aim is to explain the enduring concepts underlying all computer systems, and to show you the concrete
ways that these ideas affect the correctness, performance, and utility of your application programs. Unlike
other systems books, which are written primarily for system builders, this book is written for programmers,
from a programmer’s perspective.

If you study and learn the concepts in this book, you will be on your way to becoming the rare “power
programmer” who knows how things work and how to fix them when they break. You will also be prepared
to study specific systems topics such as compilers, computer architecture, operating systems, embedded
systems, and networking.

Assumptions About the Reader’s Background

The examples in the book are based on Intel-compatible processors (called “IA32” by Intel and “x86”
colloquially) running C programs on Unix or Unix-like (such as Linux) operating systems. (To simplify
our presentation, we will use the term “Unix” as an umbrella term for systems like Solaris and Linux.) The
text contains numerous programming examples that have been compiled and run on Linux systems. We
assume that you have access to such a machine, and are able to log in and do simple things such as changing
directories.

If your computer runs Microsoft Windows, you have two choices. First, you can get a copy of Linux (see
www.linux.org or www.redhat.com) and install it as a “dual boot” option, so that your machine can
run either operating system. Alternatively, by installing a copy of the Cygwin tools (www.cygwin.com),
you can have up a Unix-like shell under Windows and have an environment very close to that provided by
Linux. Not all features of Linux are available under Cygwin, however.

We also assume that you have some familiarity with C or C++. If your only prior experience is with Java,
the transition will require more effort on your part, but we will help you. Java and C share similar syntax
and control statements. However, there are aspects of C, particularly pointers, explicit dynamic memory
allocation, and formatted I/O, that do not exist in Java. Fortunately, C is a small language, and it is clearly
and beautifully described in the classic “K&R” text by Brian Kernighan and Dennis Ritchie [41]. Regardless
of your programming background, consider K&R an essential part of your personal systems library.

Several of the early chapters in the book explore the interactions between C programs and their machine-

xv
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language counterparts. The machine language examples were all generated by the GNU GCC compiler
running on an Intel IA32 processor. We do not assume any prior experience with hardware, machine lan-
guage, or assembly-language programming.

New to C?: Advice on the C Programming Language
To help readers whose background in C programming is weak (or nonexistent), we have also included these special
notes to highlight features that are especially important in C. We assume you are familiar with C++ or Java. End.

How to Read the Book

Learning how computer systems work from a programmer’s perspective is great fun, mainly because it can
be done so actively. Whenever you learn some new thing, you can try it out right away and see the result
first hand. In fact, we believe that the only way to learn systems is to do systems, either working concrete
problems, or writing and running programs on real systems.

This theme pervades the entire book. When a new concept is introduced, it is followed in the text by one
or more practice problems that you should work immediately to test your understanding. Solutions to the
practice problems are at the end of each chapter (look for the blue edge). As you read, try to solve each
problem on your own, and then check the solution to make sure you are on the right track. Each chapter
is followed by a set of homework problems of varying difficulty. Your instructor has the solutions to the
homework problems in an Instructor’s Manual. For each homework problem, we show a rating of the
amount of effort we feel it will require:

�
Should require just a few minutes. Little or no programming required.

���
Might require up to 20 minutes. Often involves writing and testing some code. Many of these
are derived from problems we have given on exams.

�����
Requires a significant effort, perhaps 1–2 hours. Generally involves writing and testing a
significant amount of code.

�������
A lab assignment, requiring up to 10 hours of effort.

Each code example in the text was formatted directly, without any manual intervention, from a C program
compiled with GCC version 2.95.3, and tested on a Linux system with a 2.2.16 kernel. All of the source code
is available from the CS:APP Web page at csapp.cs.cmu.edu. In the text, the file names of the source
programs are documented in horizontal bars that surround the formatted code. For example, the program in
Figure 1 can be found in the file hello.c in directory code/intro/. We encourage you to try running
the example programs on your system as you encounter them.

Finally, some sections (denoted by a “*”) contain material that you might find interesting, but that can be
skipped without any loss of continuity.

Aside: What is an aside?
You will encounter asides of this form throughout the text. Asides are parenthetical remarks that give you some
additional insight into the current topic. Asides serve a number of purposes. Some are little history lessons. For
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code/intro/hello.c

1 #include <stdio.h>
2

3 int main()
4 {
5 printf("hello, world\n");
6 }

code/intro/hello.c

Figure 1: A typical code example.

example, where did C, Linux, and the Internet come from? Other asides are meant to clarify ideas that students
often find confusing. For example, what is the difference between a cache line, set, and block? Other asides give
real-world examples. For example, how a floating-point error crashed a French rocket, or what the geometry of a
real IBM disk drive looks like. Finally, some asides are just fun stuff. For example, what is a “hoinky”? End Aside.

Origins of the Book

The book stems from an introductory course that we developed at Carnegie Mellon University in the Fall
of 1998, called 15-213: Introduction to Computer Systems (ICS) [7]. The ICS course has been taught every
semester since then, each time to about 150 students, mostly sophomores in computer science and computer
engineering. It has since become a prerequisite for most upper-level systems courses in the CS and ECE
departments at Carnegie Mellon.

The idea with ICS was to introduce students to computers in a different way. Few of our students would
have the opportunity to build a computer system. On the other hand, most students, even the computer
engineers, would be required to use and program computers on a daily basis. So we decided to teach about
systems from the point of view of the programmer, using the following filter: We would cover a topic only
if it affected the performance, correctness, or utility of user-level C programs.

For example, topics such as hardware adder and bus designs were out. Topics such as machine language
were in, but instead of focusing on how to write assembly language, we would look at how C constructs
such as pointers, loops, procedure calls and returns, and switch statements were translated by the compiler.
Further, we would take a broader and more realistic view of the system as both hardware and systems soft-
ware, covering such topics as linking, loading, processes, signals, performance optimization, measurement,
I/O, and network and concurrent programming.

This approach allowed us to teach the ICS course in a way that was practical, concrete, hands-on, and
exciting for the students. The response from our students and faculty colleagues was immediate and over-
whelmingly positive, and we realized that others outside of CMU might benefit from using our approach.
Hence this book, which we developed over a period of two years from the ICS lecture notes.

Aside: ICS numerology.
The numerology of the ICS course is a little strange. About halfway through the first semester, we realized that
the assigned course number (15-213) was also the CMU zip code, hence the motto “15-213: The course that gives
CMU its zip!”. By chance, the alpha version of the manuscript was printed on February 13, 2001 (2/13/01). When
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we presented the course at the SIGCSE education conference, the talk was scheduled in Room 213. And the final
version of the book has 13 chapters. It’s a good thing we’re not superstitious! End Aside.

Overview of the Book

The CS:APP book consists of 13 chapters designed to capture the core ideas in computer systems:

� Chapter 1: A Tour of Computer Systems. This chapter introduces the major ideas and themes in
computer systems by tracing the life cycle of a simple “hello, world” program.

� Chapter 2: Representing and Manipulating Information. We cover computer arithmetic, emphasizing
the properties of unsigned and two’s complement number representations that affect programmers.
We consider how numbers are represented and therefore what range of values can be encoded for a
given word size. We consider the effect of casting between signed and unsigned numbers. We cover
the mathematical properties of arithmetic operations. Students are surprised to learn that the (two’s
complement) sum or product of two positive numbers can be negative. On the other hand, two’s
complement arithmetic satisfies ring properties, and hence a compiler can transform multiplication
by a constant into a sequence of shifts and adds. We use the bit-level operations of C to demonstrate
the principles and applications of Boolean algebra. We cover the IEEE floating point format in terms
of how it represents values and the mathematical properties of floating point operations.

Having a solid understanding of computer arithmetic is critical to writing reliable programs. For
example, one cannot replace the expression (x<y)with (x-y<0) due to the possibility of overflow.
One cannot even replace it with the expression (-y<-x) due to the asymmetric range of negative
and positive numbers in the two’s complement representation. Arithmetic overflow is a common
source of programming errors, yet few other books cover the properties of computer arithmetic from
a programmer’s perspective.

� Chapter 3: Machine-Level Representation of Programs. We teach students how to read the IA32
assembly language generated by a C compiler. We cover the basic instruction patterns generated
for different control constructs, such as conditionals, loops, and switch statements. We cover the
implementation of procedures, including stack allocation, register usage conventions and parameter
passing. We cover the way different data structures such as structures, unions, and arrays are allo-
cated and accessed. Learning the concepts in this chapter helps students become better programmers,
because they understand how their programs are represented on the machine. Another nice benefit is
that students develop a concrete understanding of pointers.

� Chapter 4: Processor Architecture. This chapter covers basic combinational and sequential logic
elements and then shows how these elements can be combined in a datapath that executes a sim-
plified subset of the IA32 instruction set called “Y86.” We begin with the design of a single-cycle
non-pipelined datapath, which we extend into a five-stage pipelined design. The control logic for the
processor designs in this chapter are described using a simple hardware description language called
HCL. Hardware designs written in HCL can be compiled and linked into graphical processor simula-
tors provided with the textbook.
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� Chapter 5: Optimizing Program Performance. In this chapter we introduce a number of techniques
for improving code performance. We start with machine-independent program transformations that
should be standard practice when writing any program on any machine. We then progress to trans-
formations whose efficacy depends on the characteristics of the target machine and compiler. To
motivate these transformation, we introduce a simple operational model of how modern out-of-order
processors work, and then show students how to use this model to improve the performance of their
C programs.

� Chapter 6: The Memory Hierarchy. The memory system is one of the most visible parts of a computer
system to application programmers. To this point, the students have relied on a conceptual model of
the memory system as a linear array with uniform access times. In practice, a memory system is a
hierarchy of storage devices with different capacities, costs, and access times. We cover the different
types of RAM and ROM memories and the geometry and organization of modern disk drives. We
describe how these storage devices are arranged in a hierarchy. We show how this hierarchy is made
possible by locality of reference. We make these ideas concrete by introducing a unique view of
a memory system as a “memory mountain” with ridges of temporal locality and slopes of spatial
locality. Finally, we show students how to improve the performance of application programs by
improving their temporal and spatial locality.

� Chapter 7: Linking. This chapter covers both static and dynamic linking, including the ideas of
relocatable and executable object files, symbol resolution, relocation, static libraries, shared object
libraries, and position-independent code. Linking is not covered in most systems texts, but we cover
it for several reasons. First, some of the most confusing errors that students can encounter are related
to glitches during linking, especially for large software packages. Second, the object files produced
by linkers are tied to concepts such as loading, virtual memory, and memory mapping.

� Chapter 8: Exceptional Control Flow. In this part of the course we break the single-program model
by introducing the general concept of exceptional control flow (i.e., changes in control flow that are
outside the normal branches and procedure calls). We cover examples of exceptional control flow
that exist at all levels of the system, from low-level hardware exceptions and interrupts, to context
switches between concurrent processes, to abrupt changes in control flow caused by the delivery of
Unix signals, to the nonlocal jumps in C that break the stack discipline.

This is the part of the book where we introduce students to the fundamental idea of a process. Students
learn how processes work and how they can be created and manipulated from application programs.
We show them how application programmers can make use of multiple processes via Unix system
calls. When students finish this chapter, they are able to write a Unix shell with job control.

� Chapter 9: Measuring Program Execution Time. This chapter teaches students how computers keep
track of time (interval timers, cycle timers, and system clocks), the sources of error when we try to use
these times to measure running time, and how to exploit this knowledge to get accurate measurements.
To the best of our knowledge, this is unique material that has never been discussed before in any
consistent way. We include the topic at this point because it requires an understanding of assembly
language, processes, and caches.

� Chapter 10: Virtual Memory. Our presentation of the virtual memory system seeks to give students
some understanding of how it works and its characteristics. We want students to know how it is that
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the different simultaneous processes can each use an identical range of addresses, sharing some pages
but having individual copies of others. We also cover issues involved in managing and manipulating
virtual memory. In particular, we cover the operation of storage allocators such as the Unix malloc
and free operations. Covering this material serves several purposes. It reinforces the concept that
the virtual memory space is just an array of bytes that the program can subdivide into different storage
units. It helps students understand the effects of programs containing memory referencing errors such
as storage leaks and invalid pointer references. Finally, many application programmers write their
own storage allocators optimized toward the needs and characteristics of the application.

� Chapter 11: System-Level I/O. We cover the basic concepts of Unix I/O such as files and descriptors.
We describe how files are shared, how I/O redirection works, and how to access file metadata. We
also develop a robust buffered I/O package that deals correctly with short counts. We cover the C
standard I/O library and its relationship to Unix I/O, focusing on limitations of standard I/O that make
it unsuitable for network programming. In general, the topics covered in this chapter are building
blocks for the next two chapters on network and concurrent programming.

� Chapter 12: Network Programming. Networks are interesting I/O devices to program, tying together
many of the ideas that we have studied earlier in the text, such as processes, signals, byte ordering,
memory mapping, and dynamic storage allocation. Network programs also provide a compelling
context for concurrency, which is the topic of the next section. This chapter is a thin slice through
network programming that gets the students to point where they can write a Web server. We cover
the client-server model that underlies all network applications. We present a programmer’s view of
the Internet, and show students how to write Internet clients and servers using the sockets interface.
Finally, we introduce HTTP and develop a simple iterative Web server.

� Chapter 13: Concurrent Programming. This chapter introduces students to concurrent programming
using Internet server design as the running motivational example. We compare and contrast the three
basic mechanisms for writing concurrent programs — processes, I/O multiplexing, and threads —
and show how to use them to build concurrent Internet servers. We cover basic principles of syn-
chronization using

�
and � semaphore operations, thread safety and reentrancy, race conditions, and

deadlocks.

Courses Based on the Book

Instructors can use the CS:APP book to teach five different kinds of systems courses (Figure 2). The
particular course depends on curriculum requirements, personal taste, and the backgrounds and abilities
of the students. From left to right in the figure, the courses are characterized by an increasing emphasis on
the programmer’s perspective of a system. Here is a brief description:

� ORG: A computer organization course with traditional topics covered in an untraditional style. Tra-
ditional topics such as logic design, processor architecture, assembly language, and memory systems
are covered. However, there is more emphasis on the impact for the programmer. For example, data
representations are related back to their impact on C programs. Students learn how C constructs are
represented in machine language.
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� ORG+: The ORG course with additional emphasis on the impact of hardware on the performance
of application programs. Compared to ORG, students learn more about code optimization and about
improving the memory performance of their C programs.

� ICS: The baseline ICS course, designed to produce enlightened programmers who understand the im-
pact of the hardware, operating system, and compilation system on the performance and correctness
of their application programs. A significant difference from ORG+ is that low-level processor archi-
tecture is not covered. Instead, programmers work with a higher-level model of a modern out-of-order
processor. The ICS course fits nicely into a 10-week quarter, and can also be stretched to a 15-week
semester if covered at a more leisurely pace.

� ICS+: The baseline ICS course with additional coverage of systems programming topics such as
system-level I/O, network programming, and concurrent programming. This is the semester-long
Carnegie Mellon course, which covers every chapter in CS:APP except low-level processor architec-
ture.

� SP: A systems programming course. Similar to the ICS+ course, but drops floating point and perfor-
mance optimization, and places more emphasis on systems programming, including process control,
dynamic linking, system-level I/O, network programming, and concurrent programming. Instructors
might want to supplement from other sources for advanced topics such as daemons, terminal control,
and Unix IPC.

Course
Chapter Topic ORG ORG+ ICS ICS+ SP

1 Tour of Systems � � � � �

2 Data representation � � � � � � (d)

3 Machine language � � � � �

4 Processor architecture � �

5 Code optimization � � �

6 Memory hierarchy � � (a) � � � � � (a)

7 Linking � � (c) � � (c) �

8 Exceptional control flow � � �

9 Performance measurement � �

10 Virtual memory � � (b) � � � �

11 System-level I/O � �

12 Network programming � �

13 Concurrent programming � �

Figure 2: Five systems courses based on the CS:APP book. Notes: (a) Hardware only, (b) No dynamic
storage allocation, (c) No dynamic linking, (d) No floating point. ICS+ is the 15-213 course from Carnegie
Mellon.

The main message of Figure 2 is that the CS:APP book gives you a lot of options. If you want your students
to be exposed to lower-level processor architecture, then that option is available via the ORG and ORG+
courses. On the other hand, if you want to switch from your current computer organization course to an ICS
or ICS+ course, but are wary are making such a drastic change all at once, then you can move towards ICS
incrementally. You can start with ORG, which teaches the traditional topics in an non-traditional way. Once
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you are comfortable with that material, then you can move to ORG+, and eventually to ICS. If students have
no experience in C (for example they have only programmed in Java), you could spend several weeks on C
and then cover the material of ORG or ICS.

Finally, we note that the ORG+ and SP courses would make a nice two-term (either quarters or semesters)
sequence. Or you might consider offering ICS+ as one term of ICS and one term of SP.

Classroom-Tested Laboratory Exercises

The ICS+ course at Carnegie Mellon receives very high evaluations from students. Median scores of
�������������

and means of � �
	�������� are typical. Students cite the fun, exciting, and relevant laboratory exercises as the
primary reason. Here are examples of the labs that are provided with the book:

� Data Lab. This lab requires students to implement simple logical and arithmetic functions, but using
a highly restricted subset of C. For example, they must compute the absolute value of a number using
only bit-level operations. This lab helps students understand the bit-level representations of C data
types and the bit-level behavior of the operations on data.

� Binary Bomb Lab. A binary bomb is a program provided to students as an object code file. When run,
it prompts the user to type in 6 different strings. If any of these is incorrect, the bomb “explodes,”
printing an error message and logging the event on a grading server. Students must “defuse” their own
unique bomb by disassembling and reverse engineering the program to determine what the 6 strings
should be. The lab teaches students to understand assembly language, and also forces them to learn
how to use a debugger.

� Buffer Overflow Lab. Students are required to modify the run-time behavior of a binary executable by
exploiting a buffer overflow bug. This lab teaches the students about the stack discipline and teaches
them about the danger of writing code that is vulnerable to buffer overflow attacks.

� Architecture Lab. Several of the homework problems of Chapter 4 could be combined into a lab as-
signment, where students modify the HCL description of a processor to add new instructions, change
the branch prediction policy, or add or remove bypassing paths and register ports. The resulting
processors can be simulated and run through automated tests that will detect most of the possible
bugs. This lab lets students experience the exciting parts of processor design without learning and
constructing complex, low-level models in a language such as Verilog or VHDL.

� Performance Lab. Students must optimize the performance of an application kernel function such as
convolution or matrix transposition. This lab provides a very clear demonstration of the properties of
cache memories and gives them experience with low-level program optimization.

� Shell Lab. Students implement their own Unix shell program with job control, including the ctrl-c
and ctrl-z keystrokes, fg, bg, and jobs commands. This is the student’s first introduction to
concurrency, and gives them a clear idea of Unix process control, signals, and signal handling.

� Malloc Lab. Students implement their own version of malloc, free, and (optionally) realloc.
This lab gives students a clear understanding of data layout and organization, and requires them to
evaluate different trade-offs between space and time efficiency.
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� Proxy Lab. Students implement a concurrent Web proxy that sits between their browser and the rest
of the World Wide Web. This lab exposes the students to such topics as web clients and servers, and
ties together many of the concepts from the course, such as byte ordering, file I/O, process control,
signals, signal handling, memory mapping, sockets, and concurrency.

The labs are available from the CS:APP Web page.
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Chapter 1

A Tour of Computer Systems

A computer system consists of hardware and systems software that work together to run application pro-
grams. Specific implementations of systems change over time, but the underlying concepts do not. All
computer systems have similar hardware and software components that perform similar functions. This
book is written for programmers who want to get better at their craft by understanding how these compo-
nents work and how they affect the correctness and performance of their programs.

You are poised for an exciting journey. If you dedicate yourself to learning the concepts in this book, then
you will be on your way to becoming a rare “power programmer,” enlightened by an understanding of the
underlying computer system and its impact on your application programs.

You are going to learn practical skills such as how to avoid strange numerical errors caused by the way
that computers represent numbers. You will learn how to optimize your C code by using clever tricks that
exploit the designs of modern processors and memory systems. You will learn how the compiler implements
procedure calls and how to use this knowledge to avoid the security holes from buffer overflow bugs that
plague network and Internet software. You will learn how to recognize and avoid the nasty errors during
linking that confound the average programmer. You will learn how to write your own Unix shell, your own
dynamic storage allocation package, and even your own Web server!

In their classic text on the C programming language [41], Kernighan and Ritchie introduce readers to C
using the hello program shown in Figure 1.1. Although hello is a very simple program, every major

code/intro/hello.c

1 #include <stdio.h>
2

3 int main()
4 {
5 printf("hello, world\n");
6 }

code/intro/hello.c

Figure 1.1: The hello program.

1
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part of the system must work in concert in order for it to run to completion. In a sense, the goal of this book
is to help you understand what happens and why, when you run hello on your system.

We begin our study of systems by tracing the lifetime of the hello program, from the time it is created
by a programmer, until it runs on a system, prints its simple message, and terminates. As we follow the
lifetime of the program, we will briefly introduce the key concepts, terminology, and components that come
into play. Later chapters will expand on these ideas.

1.1 Information is Bits + Context

Our hello program begins life as a source program (or source file) that the programmer creates with an
editor and saves in a text file called hello.c. The source program is a sequence of bits, each with a value
of 0 or 1, organized in 8-bit chunks called bytes. Each byte represents some text character in the program.

Most modern systems represent text characters using the ASCII standard that represents each character with
a unique byte-sized integer value. For example, Figure 1.2 shows the ASCII representation of the hello.c
program.

# i n c l u d e <sp> < s t d i o .
35 105 110 99 108 117 100 101 32 60 115 116 100 105 111 46

h > \n \n i n t <sp> m a i n ( ) \n {
104 62 10 10 105 110 116 32 109 97 105 110 40 41 10 123

\n <sp> <sp> <sp> <sp> p r i n t f ( " h e l
10 32 32 32 32 112 114 105 110 116 102 40 34 104 101 108

l o , <sp> w o r l d \ n " ) ; \n }
108 111 44 32 119 111 114 108 100 92 110 34 41 59 10 125

Figure 1.2: The ASCII text representation of hello.c.

The hello.c program is stored in a file as a sequence of bytes. Each byte has an integer value that
corresponds to some character. For example, the first byte has the integer value 35, which corresponds to
the character ‘#’. The second byte has the integer value 105, which corresponds to the character ‘i’, and so
on. Notice that each text line is terminated by the invisible newline character ‘\n’, which is represented by
the integer value 10. Files such as hello.c that consist exclusively of ASCII characters are known as text
files. All other files are known as binary files.

The representation of hello.c illustrates a fundamental idea: All information in a system — including
disk files, programs stored in memory, user data stored in memory, and data transferred across a network
— is represented as a bunch of bits. The only thing that distinguishes different data objects is the context
in which we view them. For example, in different contexts, the same sequence of bytes might represent an
integer, floating-point number, character string, or machine instruction.

As programmers, we need to understand machine representations of numbers because they are not the same
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as integers and real numbers. They are finite approximations that can behave in unexpected ways. This
fundamental idea is explored in detail in Chapter 2.

Aside: The C programming language.
C was developed from 1969 to 1973 by Dennis Ritchie of Bell Laboratories. The American National Standards
Institute (ANSI) ratified the ANSI C standard in 1989. The standard defines the C language and a set of library
functions known as the C standard library. Kernighan and Ritchie describe ANSI C in their classic book, which is
known affectionately as “K&R” [41]. In Ritchie’s words [65], C is “quirky, flawed, and an enormous success.” So
why the success?

� C was closely tied with the Unix operating system. C was developed from the beginning as the system
programming language for Unix. Most of the Unix kernel, and all of its supporting tools and libraries, were
written in C. As Unix became popular in universities in the late 1970s and early 1980s, many people were
exposed to C and found that they liked it. Since Unix was written almost entirely in C, it could be easily
ported to new machines, which created an even wider audience for both C and Unix.

� C is a small, simple language. The design was controlled by a single person, rather than a committee, and
the result was a clean, consistent design with little baggage. The K&R book describes the complete language
and standard library, with numerous examples and exercises, in only 261 pages. The simplicity of C made it
relatively easy to learn and to port to different computers.

� C was designed for a practical purpose. C was designed to implement the Unix operating system. Later,
other people found that they could write the programs they wanted, without the language getting in the way.

C is the language of choice for system-level programming, and there is a huge installed base of application-level
programs as well. However, it is not perfect for all programmers and all situations. C pointers are a common source
of confusion and programming errors. C also lacks explicit support for useful abstractions such as classes, objects,
and exceptions. Newer languages such as C++ and Java address these issues for application-level programs. End
Aside.

1.2 Programs Are Translated by Other Programs into Different Forms

The hello program begins life as a high-level C program because it can be read and understood by human
beings in that form. However, in order to run hello.c on the system, the individual C statements must be
translated by other programs into a sequence of low-level machine-language instructions. These instructions
are then packaged in a form called an executable object program and stored as a binary disk file. Object
programs are also referred to as executable object files.

On a Unix system, the translation from source file to object file is performed by a compiler driver:

unix> gcc -o hello hello.c

Here, the GCC compiler driver reads the source file hello.c and translates it into an executable object file
hello. The translation is performed in the sequence of four phases shown in Figure 1.3. The programs
that perform the four phases (preprocessor, compiler, assembler, and linker) are known collectively as the
compilation system.

� Preprocessing phase. The preprocessor (cpp) modifies the original C program according to directives
that begin with the # character. For example, the #include <stdio.h> command in line 1 of
hello.c tells the preprocessor to read the contents of the system header file stdio.h and insert it
directly into the program text. The result is another C program, typically with the .i suffix.
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Figure 1.3: The compilation system.

� Compilation phase. The compiler (cc1) translates the text file hello.i into the text file hello.s,
which contains an assembly-language program. Each statement in an assembly-language program
exactly describes one low-level machine-language instruction in a standard text form. Assembly
language is useful because it provides a common output language for different compilers for different
high-level languages. For example, C compilers and Fortran compilers both generate output files in
the same assembly language.

� Assembly phase. Next, the assembler (as) translates hello.s into machine-language instructions,
packages them in a form known as a relocatable object program, and stores the result in the object
file hello.o. The hello.o file is a binary file whose bytes encode machine language instructions
rather than characters. If we were to view hello.owith a text editor, it would appear to be gibberish.

� Linking phase. Notice that our hello program calls the printf function, which is part of the stan-
dard C library provided by every C compiler. The printf function resides in a separate precom-
piled object file called printf.o, which must somehow be merged with our hello.o program.
The linker (ld) handles this merging. The result is the hello file, which is an executable object file
(or simply executable) that is ready to be loaded into memory and executed by the system.

Aside: The GNU project.
GCC is one of many useful tools developed by the GNU (short for GNU’s Not Unix) project. The GNU project is a
tax-exempt charity started by Richard Stallman in 1984, with the ambitious goal of developing a complete Unix-like
system whose source code is unencumbered by restrictions on how it can be modified or distributed. As of 2002,
the GNU project has developed an environment with all the major components of a Unix operating system, except
for the kernel, which was developed separately by the Linux project. The GNU environment includes the EMACS

editor, GCC compiler, GDB debugger, assembler, linker, utilities for manipulating binaries, and other components.

The GNU project is a remarkable achievement, and yet it is often overlooked. The modern open-source movement
(commonly associated with Linux) owes its intellectual origins to the GNU project’s notion of free software (“free”
as in “free speech” not “free beer”). Further, Linux owes much of its popularity to the GNU tools, which provide
the environment for the Linux kernel. End Aside.

1.3 It Pays to Understand How Compilation Systems Work

For simple programs such as hello.c, we can rely on the compilation system to produce correct and
efficient machine code. However, there are some important reasons why programmers need to understand
how compilation systems work:
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� Optimizing program performance. Modern compilers are sophisticated tools that usually produce
good code. As programmers, we do not need to know the inner workings of the compiler in order
to write efficient code. However, in order to make good coding decisions in our C programs, we
do need a basic understanding of assembly language and how the compiler translates different C
statements into assembly language. For example, is a switch statement always more efficient than
a sequence of if-then-else statements? Just how expensive is a function call? Is a while loop
more efficient than a do loop? Are pointer references more efficient than array indexes? Why does
our loop run so much faster if we sum into a local variable instead of an argument that is passed by
reference? Why do two functionally equivalent loops have such different running times?

In Chapter 3, we will introduce the Intel IA32 machine language and describe how compilers translate
different C constructs into that language. In Chapter 5 you will learn how to tune the performance
of your C programs by making simple transformations to the C code that help the compiler do its
job. And in Chapter 6 you will learn about the hierarchical nature of the memory system, how C
compilers store data arrays in memory, and how your C programs can exploit this knowledge to run
more efficiently.

� Understanding link-time errors. In our experience, some of the most perplexing programming er-
rors are related to the operation of the linker, especially when you are trying to build large software
systems. For example, what does it mean when the linker reports that it cannot resolve a reference?
What is the difference between a static variable and a global variable? What happens if you define
two global variables in different C files with the same name? What is the difference between a static
library and a dynamic library? Why does it matter what order we list libraries on the command line?
And scariest of all, why do some linker-related errors not appear until run time? You will learn the
answers to these kinds of questions in Chapter 7

� Avoiding security holes. For many years now, buffer overflow bugs have accounted for the majority of
security holes in network and Internet servers. These bugs exist because too many programmers are
ignorant of the stack discipline that compilers use to generate code for functions. We will describe
the stack discipline and buffer overflow bugs in Chapter 3 as part of our study of assembly language.

1.4 Processors Read and Interpret Instructions Stored in Memory

At this point, our hello.c source program has been translated by the compilation system into an exe-
cutable object file called hello that is stored on disk. To run the executable file on a Unix system, we type
its name to an application program known as a shell:

unix> ./hello
hello, world
unix>

The shell is a command-line interpreter that prints a prompt, waits for you to type a command line, and
then performs the command. If the first word of the command line does not correspond to a built-in shell
command, then the shell assumes that it is the name of an executable file that it should load and run. So
in this case, the shell loads and runs the hello program and then waits for it to terminate. The hello
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program prints its message to the screen and then terminates. The shell then prints a prompt and waits for
the next input command line.

1.4.1 Hardware Organization of a System

To understand what happens to our hello program when we run it, we need to understand the hardware
organization of a typical system, which is shown in Figure 1.4. This particular picture is modeled after
the family of Intel Pentium systems, but all systems have a similar look and feel. Don’t worry about the
complexity of this figure just now. We will get to its various details in stages throughout the course of the
book.

Main
memory

I/O 
bridge

Bus interface

ALU

Register file

CPU

System bus Memory bus

Disk 
controller

Graphics
adapter

USB
controller

Mouse Keyboard Display

Disk

I/O bus Expansion slots for
other devices such
as network adapters

hello executable 
stored on disk

PC

Figure 1.4: Hardware organization of a typical system. CPU: Central Processing Unit, ALU: Arith-
metic/Logic Unit, PC: Program counter, USB: Universal Serial Bus.

Buses

Running throughout the system is a collection of electrical conduits called buses that carry bytes of infor-
mation back and forth between the components. Buses are typically designed to transfer fixed-sized chunks
of bytes known as words. The number of bytes in a word (the word size) is a fundamental system parameter
that varies across systems. For example, Intel Pentium systems have a word size of 4 bytes, while server-
class systems such as Intel Itaniums and high-end Sun SPARCS have word sizes of 8 bytes. Smaller systems
that are used as embedded controllers in automobiles and factories can have word sizes of 1 or 2 bytes. For
simplicity, we will assume a word size of 4 bytes, and we will assume that buses transfer only one word at
a time.
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I/O Devices

Input/output (I/O) devices are the system’s connection to the external world. Our example system has four
I/O devices: a keyboard and mouse for user input, a display for user output, and a disk drive (or simply disk)
for long-term storage of data and programs. Initially, the executable hello program resides on the disk.

Each I/O device is connected to the I/O bus by either a controller or an adapter. The distinction between the
two is mainly one of packaging. Controllers are chip sets in the device itself or on the system’s main printed
circuit board (often called the motherboard). An adapter is a card that plugs into a slot on the motherboard.
Regardless, the purpose of each is to transfer information back and forth between the I/O bus and an I/O
device.

Chapter 6 has more to say about how I/O devices such as disks work. In Chapter 11, you will learn how
to use the Unix I/O interface to access devices from your application programs. We focus on the especially
interesting class of devices known as networks, but the techniques generalize to other kinds of devices as
well.

Main Memory

The main memory is a temporary storage device that holds both a program and the data it manipulates
while the processor is executing the program. Physically, main memory consists of a collection of Dynamic
Random Access Memory (DRAM) chips. Logically, memory is organized as a linear array of bytes, each
with its own unique address (array index) starting at zero. In general, each of the machine instructions that
constitute a program can consist of a variable number of bytes. The sizes of data items that correspond to
C program variables vary according to type. For example, on an Intel machine running Linux, data of type
short requires two bytes, types int, float, and long four bytes, and type double eight bytes.

Chapter 6 has more to say about how memory technologies such as DRAM chips work, and how they are
combined to form main memory.

Processor

The central processing unit (CPU), or simply processor, is the engine that interprets (or executes) instruc-
tions stored in main memory. At its core is a word-sized storage device (or register) called the program
counter (PC). At any point in time, the PC points at (contains the address of) some machine-language
instruction in main memory. 1

From the time that power is applied to the system, until the time that the power is shut off, the processor
blindly and repeatedly performs the same basic task, over and over again: It reads the instruction from
memory pointed at by the program counter (PC), interprets the bits in the instruction, performs some simple
operation dictated by the instruction, and then updates the PC to point to the next instruction, which may or
may not be contiguous in memory to the instruction that was just executed.

There are only a few of these simple operations, and they revolve around main memory, the register file, and
1PC is also a commonly nused acronym for “personal computer”. However, the distinction between the two should be clear

from the context.
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the arithmetic/logic unit (ALU). The register file is a small storage device that consists of a collection of
word-sized registers, each with its own unique name. The ALU computes new data and address values. Here
are some examples of the simple operations that the CPU might carry out at the request of an instruction:

� Load: Copy a byte or a word from main memory into a register, overwriting the previous contents of
the register.

� Store: Copy a byte or a word from a register to a location in main memory, overwriting the previous
contents of that location.

� Update: Copy the contents of two registers to the ALU, which adds the two words together and stores
the result in a register, overwriting the previous contents of that register.

� I/O Read: Copy a byte or a word from an I/O device into a register.

� I/O Write: Copy a byte or a word from a register to an I/O device.

� Jump: Extract a word from the instruction itself and copy that word into the program counter (PC),
overwriting the previous value of the PC.

Chapter 4 has much more to say about how processors work.

1.4.2 Running the hello Program

Given this simple view of a system’s hardware organization and operation, we can begin to understand what
happens when we run our example program. We must omit a lot of details here that will be filled in later,
but for now we will be content with the big picture.

Initially, the shell program is executing its instructions, waiting for us to type a command. As we type the
characters “./hello” at the keyboard, the shell program reads each one into a register, and then stores it
in memory, as shown in Figure 1.5.

When we hit the enter key on the keyboard, the shell knows that we have finished typing the command.
The shell then loads the executable hello file by executing a sequence of instructions that copies the code
and data in the hello object file from disk to main memory. The data include the string of characters
”hello, world\n” that will eventually be printed out.

Using a technique known as direct memory access (DMA, discussed in Chapter 6), the data travels directly
from disk to main memory, without passing through the processor. This step is shown in Figure 1.6.

Once the code and data in the hello object file are loaded into memory, the processor begins executing
the machine-language instructions in the hello program’s main routine. These instruction copy the bytes
in the ”hello, world\n” string from memory to the register file, and from there to the display device,
where they are displayed on the screen. This step is shown in Figure 1.7.
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Figure 1.5: Reading the hello command from the keyboard.
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Figure 1.6: Loading the executable from disk into main memory.
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Figure 1.7: Writing the output string from memory to the display.

1.5 Caches Matter

An important lesson from this simple example is that a system spends a lot of time moving information from
one place to another. The machine instructions in the hello program are originally stored on disk. When
the program is loaded, they are copied to main memory. As the processor runs the program, instructions are
copied from main memory into the processor. Similarly, the data string ”hello,world\n”, originally
on disk, is copied to main memory, and then copied from main memory to the display device. From a
programmer’s perspective, much of this copying is overhead that slows down the “real work” of the program.
Thus, a major goal for system designers is make these copy operations run as fast as possible.

Because of physical laws, larger storage devices are slower than smaller storage devices. And faster devices
are more expensive to build than their slower counterparts. For example, the disk drive on a typical system
might be 100 times larger than the main memory, but it might take the processor 10,000,000 times longer to
read a word from disk than from memory.

Similarly, a typical register file stores only a few hundred bytes of information, as opposed to millions of
bytes in the main memory. However, the processor can read data from the register file almost 100 times
faster than from memory. Even more troublesome, as semiconductor technology progresses over the years,
this processor-memory gap continues to increase. It is easier and cheaper to make processors run faster than
it is to make main memory run faster.

To deal with the processor-memory gap, system designers include smaller faster storage devices called
cache memories (or simply caches) that serve as temporary staging areas for information that the processor
is likely to need in the near future. Figure 1.8 shows the cache memories in a typical system. An L1 cache
on the processor chip holds tens of thousands of bytes and can be accessed nearly as fast as the register file.
A larger L2 cache with hundreds of thousands to millions of bytes is connected to the processor by a special
bus. It might take 5 times longer for the process to access the L2 cache than the L1 cache, but this is still 5
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Figure 1.8: Cache memories.

to 10 times faster than accessing the main memory. The L1 and L2 caches are implemented with a hardware
technology known as Static Random Access Memory (SRAM).

One of the most important lessons in this book is that application programmers who are aware of cache
memories can exploit them to improve the performance of their programs by an order of magnitude. You
will learn more about these important devices and how to exploit them in Chapter 6.

1.6 Storage Devices Form a Hierarchy

This notion of inserting a smaller, faster storage device (e.g., cache memory) between the processor and a
larger slower device (e.g., main memory) turns out to be a general idea. In fact, the storage devices in every
computer system are organized as a memory hierarchy similar to Figure 1.9. As we move from the top of
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Figure 1.9: An example of a memory hierarchy.

the hierarchy to the bottom, the devices become slower, larger, and less costly per byte. The register file
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occupies the top level in the hierarchy, which is known as level 0 or L0. The L1 cache occupies level 1
(hence the term L1). The L2 cache occupies level 2. Main memory occupies level 3, and so on.

The main idea of a memory hierarchy is that storage at one level serves as a cache for storage at the next
lower level. Thus, the register file is a cache for the L1 cache, which is a cache for the L2 cache, which is a
cache for the main memory, which is a cache for the disk. On some networked systems with distributed file
systems, the local disk serves as a cache for data stored on the disks of other systems.

Just as programmers can exploit knowledge of the L1 and L2 caches to improve performance, programmers
can exploit their understanding of the entire memory hierarchy. Chapter 6 will have much more to say about
this.

1.7 The Operating System Manages the Hardware

Back to our hello example. When the shell loaded and ran the hello program, and when the hello
program printed its message, neither program accessed the keyboard, display, disk, or main memory directly.
Rather, they relied on the services provided by the operating system. We can think of the operating system as
a layer of software interposed between the application program and the hardware, as shown in Figure 1.10.
All attempts by an application program to manipulate the hardware must go through the operating system.

Application programs

Processor Main memory I/O devices

Operating system
Software

Hardware

Figure 1.10: Layered view of a computer system.

The operating system has two primary purposes: (1) to protect the hardware from misuse by runaway appli-
cations, and (2) to provide applications with simple and uniform mechanisms for manipulating complicated
and often wildly different low-level hardware devices. The operating system achieves both goals via the
fundamental abstractions shown in Figure 1.11: processes, virtual memory, and files. As this figure sug-

Processor Main memory I/O devices

Processes

Files

Virtual memory

Figure 1.11: Abstractions provided by an operating system.

gests, files are abstractions for I/O devices, virtual memory is an abstraction for both the main memory and
disk I/O devices, and processes are abstractions for the processor, main memory, and I/O devices. We will
discuss each in turn.
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Aside: Unix and Posix.
The 1960s was an era of huge, complex operating systems, such as IBM’s OS/360 and Honeywell’s Multics systems.
While OS/360 was one of the most successful software projects in history, Multics dragged on for years and never
achieved wide-scale use. Bell Laboratories was an original partner in the Multics project, but dropped out in 1969
because of concern over the complexity of the project and the lack of progress. In reaction to their unpleasant
Multics experience, a group of Bell Labs researchers — Ken Thompson, Dennis Ritchie, Doug McIlroy, and Joe
Ossanna — began work in 1969 on a simpler operating system for a DEC PDP-7 computer, written entirely in
machine language. Many of the ideas in the new system, such as the hierarchical file system and the notion of a
shell as a user-level process, were borrowed from Multics but implemented in a smaller, simpler package. In 1970,
Brian Kernighan dubbed the new system “Unix” as a pun on the complexity of “Multics.” The kernel was rewritten
in C in 1973, and Unix was announced to the outside world in 1974 [66].

Because Bell Labs made the source code available to schools with generous terms, Unix developed a large following
at universities. The most influential work was done at the University of California at Berkeley in the late 1970s and
early 1980s, with Berkeley researchers adding virtual memory and the Internet protocols in a series of releases called
Unix 4.xBSD (Berkeley Software Distribution). Concurrently, Bell Labs was releasing their own versions, which
become known as System V Unix. Versions from other vendors, such as the Sun Microsystems Solaris system, were
derived from these original BSD and System V versions.

Trouble arose in the mid 1980s as Unix vendors tried to differentiate themselves by adding new and often incom-
patible features. To combat this trend, IEEE (Institute for Electrical and Electronics Engineers) sponsored an effort
to standardize Unix, later dubbed “Posix” by Richard Stallman. The result was a family of standards, known as
the Posix standards, that cover such issues as the C language interface for Unix system calls, shell programs and
utilities, threads, and network programming. As more systems comply more fully with the Posix standards, the
differences between Unix versions are gradually disappearing. End Aside.

1.7.1 Processes

When a program such as hello runs on a modern system, the operating system provides the illusion that
the program is the only one running on the system. The program appears to have exclusive use of both the
processor, main memory, and I/O devices. The processor appears to execute the instructions in the program,
one after the other, without interruption. And the code and data of the program appear to be the only objects
in the system’s memory. These illusions are provided by the notion of a process, one of the most important
and successful ideas in computer science.

A process is the operating system’s abstraction for a running program. Multiple processes can run concur-
rently on the same system, and each process appears to have exclusive use of the hardware. By concurrently,
we mean that the instructions of one process are interleaved with the instructions of another process. The
operating system performs this interleaving with a mechanism known as context switching.

The operating system keeps track of all the state information that the process needs in order to run. This
state, which is known as the context, includes information such as the current values of the PC, the register
file, and the contents of main memory. At any point in time, exactly one process is running on the system.
When the operating system decides to transfer control from the current process to a some new process, it
performs a context switch by saving the context of the current process, restoring the context of the new
process, and then passing control to the new process. The new process picks up exactly where it left off.
Figure 1.12 shows the basic idea for our example hello scenario.

There are two concurrent processes in our example scenario: the shell process and the hello process.
Initially, the shell process is running alone, waiting for input on the command line. When we ask it to run
the hello program, the shell carries out our request by invoking a special function known as a system
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Figure 1.12: Process context switching.

call that passes control to the operating system. The operating system saves the shell’s context, creates
a new hello process and its context, and then passes control to the new hello process. After hello
terminates, the operating system restores the context of the shell process and passes control back to it, where
it waits for the next command line input.

Implementing the process abstraction requires close cooperation between both the low-level hardware and
the operating system software. We will explore how this works, and how applications can create and control
their own processes, in Chapter 8.

One of the implications of the process abstraction is that by interleaving different processes, it distorts
the notion of time, making it difficult for programmers to obtain accurate and repeatable measurements of
running time. Chapter 9 discusses the various notions of time in a modern system and describes techniques
for obtaining accurate measurements.

1.7.2 Threads

Although we normally think of a process as having a single control flow, in modern systems a process can
actually consist of multiple execution units, called threads, each running in the context of the process and
sharing the same code and global data. Threads are an increasingly important programming model because
of the requirement for concurrency in network servers, because it is easier to share data between multiple
threads than between multiple processes, and because threads are typically more efficient than processes.
You will learn the basic concepts of concurrency, including threading, in Chapter 13.

1.7.3 Virtual Memory

Virtual memory is an abstraction that provides each process with the illusion that it has exclusive use of the
main memory. Each process has the same uniform view of memory, which is known as its virtual address
space. The virtual address space for Linux processes is shown in Figure 1.13. (Other Unix systems use a
similar layout.) In Linux, the topmost one-fourth of the address space is reserved for code and data in the
operating system that is common to all processes. The bottommost three-quarters of the address space holds
the code and data defined by the user’s process. Note that addresses in the figure increase from bottom to
the top.
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Figure 1.13: Process virtual address space.

The virtual address space seen by each process consists of a number of well-defined areas, each with a
specific purpose. You will learn more about these areas later in the book, but it will be helpful to look
briefly at each, starting with the lowest addresses and working our way up:

� Program code and data. Code begins at the same fixed address, followed by data locations that
correspond to global C variables. The code and data areas are initialized directly from the contents
of an executable object file, in our case the hello executable. You will learn more about this part of
the address space when we study linking and loading in Chapter 7.

� Heap. The code and data areas are followed immediately by the run-time heap. Unlike the code and
data areas, which are fixed in size once the process begins running, the heap expands and contracts
dynamically at run time as a result of calls to C standard library routines such as malloc and free.
We will study heaps in detail when we learn about managing virtual memory in Chapter 10.

� Shared libraries. Near the middle of the address space is an area that holds the code and data for
shared libraries such as the C standard library and the math library. The notion of a shared library is
a powerful, but somewhat difficult concept. You will learn how they work when we study dynamic
linking in Chapter 7.

� Stack. At the top of the user’s virtual address space is the user stack that the compiler uses to im-
plement function calls. Like the heap, the user stack expands and contracts dynamically during the
execution of the program. In particular, each time we call a function, the stack grows. Each time we
return from a function, it contracts. You will learn how the compiler uses the stack in Chapter 3.
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� Kernel virtual memory. The kernel is the part of the operating system that is always resident in
memory. The top 1/4 of the address space is reserved for the kernel. Application programs are not
allowed to read or write the contents of this area or to directly call functions defined in the kernel
code.

For virtual memory to work, a sophisticated interaction is required between the hardware and the operating
system software, including a hardware translation of every address generated by the processor. The basic
idea is to store the contents of a process’s virtual memory on disk, and then use the main memory as a cache
for the disk. Chapter 10 explains how this works and why it is so important to the operation of modern
systems.

1.7.4 Files

A file is a sequence of bytes, nothing more and nothing less. Every I/O device, including disks, keyboards,
displays, and even networks, is modeled as a file. All input and output in the system is performed by reading
and writing files, using a small set of system calls known as Unix I/O.

This simple and elegant notion of a file is nonetheless very powerful because it provides applications with
a uniform view of all of the varied I/O devices that might be contained in the system. For example, appli-
cation programmers who manipulate the contents of a disk file are blissfully unaware of the specific disk
technology. Further, the same program will run on different systems that use different disk technologies.
You will learn about Unix I/O in Chapter 11.

Aside: The Linux project.
In August, 1991, a Finnish graduate student named Linus Torvalds modestly announced a new Unix-like operating
system kernel:

From: torvalds@klaava.Helsinki.FI (Linus Benedict Torvalds)
Newsgroups: comp.os.minix
Subject: What would you like to see most in minix?
Summary: small poll for my new operating system
Date: 25 Aug 91 20:57:08 GMT

Hello everybody out there using minix -
I’m doing a (free) operating system (just a hobby, won’t be big and
professional like gnu) for 386(486) AT clones. This has been brewing
since April, and is starting to get ready. I’d like any feedback on
things people like/dislike in minix, as my OS resembles it somewhat
(same physical layout of the file-system (due to practical reasons)
among other things).

I’ve currently ported bash(1.08) and gcc(1.40), and things seem to work.
This implies that I’ll get something practical within a few months, and
I’d like to know what features most people would want. Any suggestions
are welcome, but I won’t promise I’ll implement them :-)

Linus (torvalds@kruuna.helsinki.fi)

The rest, as they say, is history. Linux has evolved into a technical and cultural phenomenon. By combining forces
with the GNU project, the Linux project has developed a complete, Posix-compliant version of the Unix operating
system, including the kernel and all of the supporting infrastructure. Linux is available on a wide array of computers,
from hand-held devices to mainframe computers. A group at IBM has even ported Linux to a wristwatch! End
Aside.
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1.8 Systems Communicate With Other Systems Using Networks

Up to this point in our tour of systems, we have treated a system as an isolated collection of hardware
and software. In practice, modern systems are often linked to other systems by networks. From the point of
view of an individual system, the network can be viewed as just another I/O device, as shown in Figure 1.14.
When the system copies a sequence of bytes from main memory to the network adapter, the data flows across
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Figure 1.14: A network is another I/O device.

the network to another machine, instead of, say, to a local disk drive. Similarly, the system can read data
sent from other machines and copy this data to its main memory.

With the advent of global networks such as the Internet, copying information from one machine to another
has become one of the most important uses of computer systems. For example, applications such as email,
instant messaging, the World Wide Web, FTP, and telnet are all based on the ability to copy information
over a network.

Returning to our hello example, we could use the familiar telnet application to run hello on a remote
machine. Suppose we use a telnet client running on our local machine to connect to a telnet server on
a remote machine. After we log in to the remote machine and run a shell, the remote shell is waiting to
receive an input command. From this point, running the hello program remotely involves the five basic
steps shown in Figure 1.15.

After we type the ”hello” string to the telnet client and hit the enter key, the client sends the string to
the telnet server. After the telnet server receives the string from the network, it passes it along to the remote
shell program. Next, the remote shell runs the hello program, and passes the output line back to the telnet
server. Finally, the telnet server forwards the output string across the network to the telnet client, which
prints the output string on our local terminal.

This type of exchange between clients and servers is typical of all network applications. In Chapter 12 you
will learn how to build network applications, and apply this knowledge to build a simple Web server.
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Figure 1.15: Using telnet to run hello remotely over a network.

1.9 The Next Step

This concludes our initial whirlwind tour of systems. An important idea to take away from this discussion
is that a system is more than just hardware. It is a collection of intertwined hardware and systems software
that must cooperate in order to achieve the ultimate goal of running application programs. The rest of this
book will expand on this theme.

1.10 Summary

A computer system consists of hardware and systems software that cooperate to run application programs.
Information inside the computer is represented as groups of bits that are interpreted in different ways, de-
pending on the context. Programs are translated by other programs into different forms, beginning as ASCII
text and then translated by compilers and linkers into binary executable files.

Processors read and interpret binary instructions that are stored in main memory. Since computers spend
most of their time copying data between memory, I/O devices, and the CPU registers, the storage devices
in a system are arranged in a hierarchy, with the CPU registers at the top, followed by multiple levels of
hardware cache memories, DRAM main memory, and disk storage. Storage devices that are higher in the
hierarchy are faster and more costly per bit than those lower in the hierarchy. Storage devices that are higher
in the hierarchy serve as caches for devices that are lower in the hierarchy. Programmers can optimize the
performance of their C programs by understanding and exploiting the memory hierarchy.

The operating system kernel serves an intermediary between the application and the hardware. It provides
three fundamental abstractions: (1) Files are abstractions for I/O devices. (2) Virtual memory is an abstrac-
tion for both main memory and disks. (3) Processes are abstractions for the processor, main memory, and
I/O devices.

Finally, networks provide ways for computer systems to communicate with one another. From the viewpoint
of a particular system, the network is just another I/O device.

Bibliographic Notes

Ritchie has written interesting first hand accounts of the early days of C and Unix [64, 65]. Ritchie and
Thompson presented the first published account of Unix [66]. Silberschatz and Gavin [72] provide a compre-
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hensive history of the different flavors of Unix. The GNU (www.gnu.org) and Linux (www.linux.org)
Web pages have loads of current and historical information. Unfortunately, the Posix standards are not avail-
able online. They must be ordered for a fee from IEEE (standards.ieee.org).
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Our exploration of computer systems starts by studying the computer itself, comprising a processor and a
memory subsystem. At the core, we require ways to represent basic data types, such as approximations
to integer and real arithmetic. From there we can consider how machine-level instructions manipulate this
data and how a compiler translates C programs into these instructions. Next, we study several methods of
implementing a processor to gain a better understanding of how hardware resources are used to execute
instructions. Once we understand compilers and machine-level code, we can examine how to maximize
program performance by writing source code that will compile efficiently. We conclude with the design of
the memory subsystem, one of the most complex components of a modern computer system.

This part of the book will give you a deep understanding of how application programs are represented and
executed. You will gain skills that help you write programs that are reliable and that make the best use of
the computing resources.



24



Chapter 2

Representing and Manipulating
Information

Modern computers store and process information represented as two-valued signals. These lowly binary
digits, or bits, form the basis of the digital revolution. The familiar decimal, or base-10, representation has
been in use for over 1000 years, having been developed in India, improved by Arab mathematicians in the
12th century, and brought to the West in the 13th century by the Italian mathematician Leonardo Pisano,
better known as Fibonacci. Using decimal notation is natural for ten-fingered humans, but binary values
work better when building machines that store and process information. Two-valued signals can readily
be represented, stored, and transmitted, for example, as the presence or absence of a hole in a punched
card, as a high or low voltage on a wire, or as a magnetic domain oriented clockwise or counterclockwise.
The electronic circuitry for storing and performing computations on two-valued signals is very simple and
reliable, enabling manufacturers to integrate millions of such circuits on a single silicon chip.

In isolation, a single bit is not very useful. When we group bits together and apply some interpretation that
gives meaning to the different possible bit patterns, however, we can represent the elements of any finite set.
For example, using a binary number system, we can use groups of bits to encode nonnegative numbers. By
using a standard character code, we can encode the letters and symbols in a document. We cover both of
these encodings in this chapter, as well as encodings to represent negative numbers and to approximate real
numbers.

We consider the three most important encodings of numbers. Unsigned encodings are based on traditional
binary notation, representing numbers greater than or equal to 0. Two’s-complement encodings are the most
common way to represent signed integers, that is, numbers that may be either positive or negative. Floating-
point encodings are a base-two version of scientific notation for representing real numbers. Computers
implement arithmetic operations, such as addition and multiplication, with these different representations,
similar to the corresponding operations on integers and real numbers.

Computer representations use a limited number of bits to encode a number, and hence some operations can
overflow when the results are too large to be represented. This can lead to some surprising results. For
example, on most of today’s computers, computing the expression

200 * 300 * 400 * 500

25
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yields � 884,901,888. This runs counter to the properties of integer arithmetic—computing the product of a
set of positive numbers has yielded a negative result.

On the other hand, integer computer arithmetic satisfies many of the familiar properties of true integer arith-
metic. For example, multiplication is associative and commutative, so that computing any of the following
C expressions yields � 884,901,888:

(500 * 400) * (300 * 200)
((500 * 400) * 300) * 200
((200 * 500) * 300) * 400
400 * (200 * (300 * 500))

The computer might not generate the expected result, but at least it is consistent!

Floating-point arithmetic has altogether different mathematical properties. The product of a set of positive
numbers will always be positive, although overflow will yield the special value

���
. On the other hand,

floating-point arithmetic is not associative due to the finite precision of the representation. For example,
the C expression (3.14+1e20)-1e20 will evaluate to 0.0 on most machines, while 3.14+(1e20-
1e20) will evaluate to 3.14.

By studying the actual number representations, we can understand the ranges of values that can be repre-
sented and the properties of the different arithmetic operations. This understanding is critical to writing
programs that work correctly over the full range of numeric values and that are portable across different
combinations of machine, operating system, and compiler.

Computers use several different binary representations to encode numeric values. You will need to be
familiar with these representations as you progress into machine-level programming in Chapter 3. We
describe these encodings in this chapter and give you some practice reasoning about number representations.

We derive several ways to perform arithmetic operations by directly manipulating the bit-level representa-
tions of numbers. Understanding these techniques will be important for understanding the machine-level
code generated when compiling arithmetic expressions.

Our treatment of this material is very mathematical. We start with the basic definitions of the encodings
and then derive such properties as the range of representable numbers, their bit-level representations, and
the properties of the arithmetic operations. We believe it is important for you to examine this material
from such an abstract viewpoint, because programmers need to have a solid understanding of how computer
arithmetic relates to the more familiar integer and real arithmetic. Although it may appear intimidating,
the mathematical treatment requires just an understanding of basic algebra. We recommend you work the
practice problems as a way to solidify the connection between the formal treatment and some real-life
examples.

Aside: How to read this chapter.
If you find equations and formulas daunting, do not let that stop you from getting the most out of this chapter! We
provide full derivations of mathematical ideas for completeness, but the best way to read this material is often to
skip over the derivation on your initial reading. Instead, try working out a few simple examples (for example, the
practice problems) to build your intuition, and then see how the mathematical derivation reinforces your intuition.
End Aside.

The C++ programming language is built upon C, using the exact same numeric representations and opera-
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tions. Everything said in this chapter about C also holds for C++. The Java language definition, on the other
hand, created a new set of standards for numeric representations and operations. Whereas the C standard is
designed to allow a wide range of implementations, the Java standard is quite specific on the formats and
encodings of data. We highlight the representations and operations supported by Java at several places in
the chapter.

2.1 Information Storage

Rather than accessing individual bits in a memory, most computers use blocks of eight bits, or bytes, as
the smallest addressable unit of memory. A machine-level program views memory as a very large array of
bytes, referred to as virtual memory. Every byte of memory is identified by a unique number, known as
its address, and the set of all possible addresses is known as the virtual address space. As indicated by its
name, this virtual address space is just a conceptual image presented to the machine-level program. The
actual implementation (presented in Chapter 10) uses a combination of random-access memory (RAM),
disk storage, special hardware, and operating system software to provide the program with what appears to
be a monolithic byte array.

One task of a compiler and the run-time system is to subdivide this memory space into more manageable
units to store the different program objects, that is, program data, instructions, and control information.
Various mechanisms are used to allocate and manage the storage for different parts of the program. This
management is all performed within the virtual address space. For example, the value of a pointer in C—
whether it points to an integer, a structure, or some other program unit—is the virtual address of the first
byte of some block of storage. The C compiler also associates type information with each pointer, so that it
can generate different machine-level code to access the value stored at the location designated by the pointer
depending on the type of that value. Although the C compiler maintains this type information, the actual
machine-level program it generates has no information about data types. It simply treats each program
object as a block of bytes, and the program itself as a sequence of bytes.

New to C?: The role of pointers in C.
Pointers are a central feature of C. They provide the mechanism for referencing elements of data structures, includ-
ing arrays. Just like a variable, a pointer has two aspects: its value and its type. The value indicates the location
of some object, while its type indicates what kind of object (e.g., integer or floating-point number) is stored at that
location. End.

2.1.1 Hexadecimal Notation

A single byte consists of eight bits. In binary notation, its value ranges from
� � � � � � � � � to

��������������� � .
When viewed as a decimal integer, its value ranges from

�����
to � � ����� . Neither notation is very convenient for

describing bit patterns. Binary notation is too verbose, while with decimal notation, it is tedious to convert
to and from bit patterns. Instead, we write bit patterns as base-16, or hexadecimal numbers. Hexadecimal
(or simply “Hex”) uses digits ‘0’ through ‘9’, along with characters ‘A’ through ‘F’ to represent 16 possible
values. Figure 2.1 shows the decimal and binary values associated with the 16 hexadecimal digits. Written
in hexadecimal, the value of a single byte can range from 00

��	
to FF

��	
.



28 CHAPTER 2. REPRESENTING AND MANIPULATING INFORMATION

Hex digit 0 1 2 3 4 5 6 7
Decimal value 0 1 2 3 4 5 6 7
Binary value 0000 0001 0010 0011 0100 0101 0110 0111

Hex digit 8 9 A B C D E F
Decimal value 8 9 10 11 12 13 14 15
Binary value 1000 1001 1010 1011 1100 1101 1110 1111

Figure 2.1: Hexadecimal notation. Each Hex digit encodes one of 16 values.

In C, numeric constants starting with 0x or 0X are interpreted as being in hexadecimal. The characters
‘A’ through ‘F’ may be written in either upper or lower case. For example, we could write the number
FA1D37B

��	
as 0xFA1D37B, as 0xfa1d37b, or even mixing upper and lower case, e.g., 0xFa1D37b.

We will use the C notation for representing hexadecimal values in this book.

A common task in working with machine-level programs is to manually convert between decimal, binary,
and hexadecimal representations of bit patterns. Converting between binary and hexadecimal is straight-
forward, since it can be performed one hexadecimal digit at a time. Digits can be converted by referring
to a chart such as that shown in Figure 2.1. One simple trick for doing the conversion in your head is to
memorize the decimal equivalents of hex digits A, C, and F. The hex values B, D, and E can be translated to
decimal by computing their values relative to the first three.

For example, suppose you are given the number 0x173A4C. You can convert this to binary format by
expanding each hexadecimal digit, as follows:

Hexadecimal 1 7 3 A 4 C
Binary

� � � � � ����� � � ��� � � � � � � � � ��� � �

This gives the binary representation
� � � � � ����� � � ����� � � � � � ��� ��� � �

.

Conversely, given a binary number
������� � � � � � � ��� � ��� � ��� � � ���

you convert it to hexadecimal by first split-
ting it into groups of four bits each. Note, however, that if the total number of bits is not a multiple of four,
you should make the leftmost group be the one with fewer than four bits, effectively padding the number
with leading 0s. Then you translate each group of four bits into the corresponding hexadecimal digit:

Binary
��� ��� � � � � � � ��� � � � � ��� � � ���

Hexadecimal 3 C A D B 3

Practice Problem 2.1:

Perform the following number conversions:

A. 0x8F7A93 to binary.

B. Binary
�������������������������������

to hexadecimal.

C. 0xC4E5D to binary.

D. Binary
���������������������������	���	���	�������

to hexadecimal.
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When a value � is a power of two, that is, ��� � � for some � , we can readily write � in hexadecimal form
by remembering that the binary representation of � is simply 1 followed by � 0s. The hexadecimal digit 0
represents four binary 0s. So, for � written in the form

� � ��� , where
�	�
���
�

, we can write � with a
leading hex digit of 1 (

� � �
), 2 (

� � �
), 4 (

� � � ), or 8 (
� � �

), followed by � hexadecimal 0s. As an
example, for ��� � � ��� � �

� �
, we have � � ��� � � � ��� � , giving hexadecimal representation 0x800.

Practice Problem 2.2:

Fill in the blank entries in the following table, giving the decimal and hexadecimal representations of
different powers of 2:

� ��� (Decimal) ��� (Hexadecimal)
11 2048 0x800
7

8192
0x2000

16
256

0x20

Converting between decimal and hexadecimal representations requires using multiplication or division to
handle the general case. To convert a decimal number � to hexadecimal, we can repeatedly divide � by
16, giving a quotient � and a remainder � , such that ��� ��� � 	 � � . We then use the hexadecimal digit
representing � as the least significant digit and generate the remaining digits by repeating the process on � .
As an example, consider the conversion of decimal 314156:

� � � � � 	 � ��� 	�� ��� � 	 � � � � C ���� 	�� � � � ��� �!� � 	 � � � 2 �� ��� � � � 	 � � 	 � ��� � B �
� 	 � �"� � 	 � � � � C �
� � � � � 	 � � � 4 �

From this we can read off the hexadecimal representation as 0x4CB2C.

Conversely, to convert a hexadecimal number to decimal, we can multiply each of the hexadecimal digits
by the appropriate power of 16. For example, given the number 0x7AF, we compute its decimal equivalent
as �!� � 	 � � � � � � 	 � � � � �#� � � 	 � � � � � 	 � � � � � � � � � � 	�� � � � � ��� 	 � .

Practice Problem 2.3:

A single byte can be represented by two hexadecimal digits. Fill in the missing entries in the following
table, giving the decimal, binary, and hexadecimal values of different byte patterns:
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Decimal Binary Hexadecimal
0 00000000 00
55

136
243

01010010
10101100
11100111

A7
3E
BC

Aside: Converting between decimal and hexadecimal.
For converting larger values between decimal and hexadecimal, it is best to let a computer or calculator do the work.
For example, the following script in the Perl language converts a list of numbers from decimal to hexadecimal:

code/../bin/d2h

1 #!/usr/local/bin/perl
2 # Convert list of decimal numbers into hex
3

4 for ($i = 0; $i < @ARGV; $i++) {
5 printf("%d\t= 0x%x\n", $ARGV[$i], $ARGV[$i]);
6 }

code/../bin/d2h

Once this file has been set to be executable, the command:

unix> ./d2h 100 500 751

yields output:

100 = 0x64
500 = 0x1f4
751 = 0x2ef

Similarly, the following script converts from hexadecimal to decimal:

code/../bin/h2d

1 #!/usr/local/bin/perl
2 # Convert list of hex numbers into decimal
3

4 for ($i = 0; $i < @ARGV; $i++) {
5 $val = hex($ARGV[$i]);
6 printf("0x%x = %d\n", $val, $val);
7 }

code/../bin/h2d End Aside.
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C declaration Typical 32-bit Compaq Alpha
char 1 1

short int 2 2
int 4 4

long int 4 8
char * 4 8
float 4 4
double 8 8

Figure 2.2: Sizes (in bytes) of C numeric data types. The number of bytes allocated varies with machine
and compiler.

Practice Problem 2.4:

Without converting the numbers to decimal or binary, try to solve the following arithmetic problems,
giving the answers in hexadecimal. Hint: just modify the methods you use for performing decimal
addition and subtraction to use base 16.

A. 0x502c
�
0x8 �

B. 0x502c � 0x30 �

C. 0x502c
�����

�

D. 0x50da � 0x502c

2.1.2 Words

Every computer has a word size, indicating the nominal size of integer and pointer data. Since a virtual
address is encoded by such a word, the most important system parameter determined by the word size is
the maximum size of the virtual address space. That is, for a machine with an � -bit word size, the virtual
addresses can range from

�
to � � � �

, giving the program access to at most � � bytes.

Most computers today have a 32-bit word size. This limits the virtual address space to 4 gigabytes (written
4 GB), that is, just over ��� � �
	

bytes. Although this is ample space for most applications, we have
reached the point where many large-scale scientific and database applications require larger amounts of
storage. Consequently, high-end machines with 64-bit word sizes are becoming increasingly commonplace
as storage costs decrease.

2.1.3 Data Sizes

Computers and compilers support multiple data formats using different ways to encode data, such as in-
tegers and floating point, as well as different lengths. For example, many machines have instructions for
manipulating single bytes, as well as integers represented as two-, four-, and eight-byte quantities. They
also support floating-point numbers represented as four and eight-byte quantities.
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The C language supports multiple data formats for both integer and floating-point data. The C data type
char represents a single byte. Although the name “char” derives from the fact that it is used to store
a single character in a text string, it can also be used to store integer values. The C data type int can
also be prefixed by the qualifiers long and short, providing integer representations of various sizes.
Figure 2.2 shows the number of bytes allocated for various C data types. The exact number depends on
both the machine and the compiler. We show two representative cases: a typical 32-bit machine, and the
Compaq Alpha architecture, a 64-bit machine targeting high end applications. Most 32-bit machines use
the allocations indicated as “typical.” Observe that “short” integers have two-byte allocations, while an
unqualified int is 4 bytes. A “long” integer uses the full word size of the machine.

Figure 2.2 also shows that a pointer (e.g., a variable declared as being of type “char *”) uses the full word
size of the machine. Most machines also support two different floating-point formats: single precision,
declared in C as float, and double precision, declared in C as double. These formats use four and eight
bytes, respectively.

New to C?: Declaring pointers.
For any data type

�
, the declaration

�
*p;

indicates that p is a pointer variable, pointing to an object of type
�

. For example

char *p;

is the declaration of a pointer to an object of type char. End.

Programmers should strive to make their programs portable across different machines and compilers. One
aspect of portability is to make the program insensitive to the exact sizes of the different data types. The
C standard sets lower bounds on the numeric ranges of the different data types, as will be covered later,
but there are no upper bounds. Since 32-bit machines have been the standard for the last 20 years, many
programs have been written assuming the allocations listed as “typical 32-bit” in Figure 2.2. Given the
increasing prominence of 64-bit machines in the near future, many hidden word size dependencies will
show up as bugs in migrating these programs to new machines. For example, many programmers assume
that a program object declared as type int can be used to store a pointer. This works fine for most 32-bit
machines but leads to problems on an Alpha.

2.1.4 Addressing and Byte Ordering

For program objects that span multiple bytes, we must establish two conventions: what will be the address
of the object, and how will we order the bytes in memory. In virtually all machines, a multibyte object is
stored as a contiguous sequence of bytes, with the address of the object given by the smallest address of the
bytes used. For example, suppose a variable x of type int has address 0x100, that is, the value of the
address expression &x is 0x100. Then the four bytes of x would be stored in memory locations 0x100,
0x101, 0x102, and 0x103.
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For ordering the bytes representing an object, there are two common conventions. Consider a � -bit integer
having a bit representation

� ����� ��� ���	� � � � � �
� � ��� � �
� , where ����� � is the most significant bit, and � � is the
least. Assuming � is a multiple of eight, these bits can be grouped as bytes, with the most significant byte
having bits

� � �	� � � � �	� � � � � ��� � �	��� � , the least significant byte having bits
� �	� � � 	 � � � ��� � � � , and the other

bytes having bits from the middle. Some machines choose to store the object in memory ordered from least
significant byte to most, while other machines store them from most to least. The former convention—where
the least significant byte comes first—is referred to as little endian. This convention is followed by most
machines from the former Digital Equipment Corporation (now part of Compaq Corporation), as well as by
Intel. The latter convention—where the most significant byte comes first—is referred to as big endian. This
convention is followed by most machines from IBM, Motorola, and Sun Microsystems. Note that we said
“most.” The conventions do not split precisely along corporate boundaries. For example, personal computers
manufactured by IBM use Intel-compatible processors and hence are little endian. Many microprocessor
chips, including Alpha and the PowerPC by Motorola, can be run in either mode, with the byte ordering
convention determined when the chip is powered up.

Continuing our earlier example, suppose the variable x of type int and at address 0x100 has a hexadecimal
value of 0x01234567. The ordering of the bytes within the address range 0x100 through 0x103 depends
on the type of machine:

Big endian
0x100 0x101 0x102 0x103

� � � 01 23 45 67 � � �

Little endian
0x100 0x101 0x102 0x103

� � � 67 45 23 01 � � �

Note that in the word 0x01234567 the high-order byte has hexadecimal value 0x01, while the low-order
byte has value 0x67.

People get surprisingly emotional about which byte ordering is the proper one. In fact, the terms “little
endian” and “big endian” come from the book Gulliver’s Travels by Jonathan Swift, where two warring
factions could not agree by which end a soft-boiled egg should be opened—the little end or the big. Just like
the egg issue, there is no technological reason to choose one byte ordering convention over the other, and
hence the arguments degenerate into bickering about sociopolitical issues. As long as one of the conventions
is selected and adhered to consistently, the choice is arbitrary.

Aside: Origin of “endian.”
Here is how Jonathan Swift, writing in 1726, described the history of the controversy between big and little endians:

. . . Lilliput and Blefuscu . . . have, as I was going to tell you, been engaged in a most obstinate
war for six-and-thirty moons past. It began upon the following occasion. It is allowed on all hands,
that the primitive way of breaking eggs, before we eat them, was upon the larger end; but his present
majesty’s grandfather, while he was a boy, going to eat an egg, and breaking it according to the ancient
practice, happened to cut one of his fingers. Whereupon the emperor his father published an edict,
commanding all his subjects, upon great penalties, to break the smaller end of their eggs. The people
so highly resented this law, that our histories tell us, there have been six rebellions raised on that
account; wherein one emperor lost his life, and another his crown. These civil commotions were
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constantly fomented by the monarchs of Blefuscu; and when they were quelled, the exiles always fled
for refuge to that empire. It is computed that eleven thousand persons have at several times suffered
death, rather than submit to break their eggs at the smaller end. Many hundred large volumes have
been published upon this controversy: but the books of the Big-endians have been long forbidden, and
the whole party rendered incapable by law of holding employments.

In his day, Swift was satirizing the continued conflicts between England (Lilliput) and France (Blefuscu). Danny
Cohen, an early pioneer in networking protocols, first applied these terms to refer to byte ordering [17], and the
terminology has been widely adopted. End Aside.

For most application programmers, the byte orderings used by their machines are totally invisible. Programs
compiled for either class of machine give identical results. At times, however, byte ordering becomes an
issue. The first is when binary data is communicated over a network between different machines. A common
problem is for data produced by a little-endian machine to be sent to a big-endian machine, or vice-versa,
leading to the bytes within the words being in reverse order for the receiving program. To avoid such
problems, code written for networking applications must follow established conventions for byte ordering
to make sure the sending machine converts its internal representation to the network standard, while the
receiving machine converts the network standard to its internal representation. We will see examples of
these conversions in Chapter 12.

A second case where byte ordering becomes important is when looking at the byte sequences representing
integer data. This occurs often when inspecting machine-level programs. As an example, the following line
occurs in a file that gives a text representation of the machine-level code for an Intel processor:

80483bd: 01 05 64 94 04 08 add %eax,0x8049464

This line was generated by a disassembler, a tool that determines the instruction sequence represented by an
executable program file. We will learn more about these tools and how to interpret lines such as this in the
next chapter. For now, we simply note that this line states that the hexadecimal byte sequence 01 05 64
94 04 08 is the byte-level representation of an instruction that adds 0x8049464 to some program value.
If we take the the final four bytes of the sequence: 64 94 04 08, and write them in reverse order, we
have 08 04 94 64. Dropping the leading 0, we have the value 0x8049464, the numeric value written
on the right. Having bytes appear in reverse order is a common occurrence when reading machine-level
program representations generated for little-endian machines such as this one. The natural way to write a
byte sequence is to have the lowest numbered byte on the left and the highest on the right, but this is contrary
to the normal way of writing numbers with the most significant digit on the left and the least on the right.

A third case where byte ordering becomes visible is when programs are written that circumvent the normal
type system. In the C language, this can be done using a cast to allow an object to be referenced according
to a different data type from which it was created. Such coding tricks are strongly discouraged for most
application programming, but they can be quite useful and even necessary for system-level programming.

Figure 2.3 shows C code that uses casting to access and print the byte representations of different pro-
gram objects. We use typedef to define data type byte_pointer as a pointer to an object of type
“unsigned char.” Such a byte pointer references a sequence of bytes where each byte is considered
to be a nonnegative integer. The first routine show_bytes is given the address of a sequence of bytes,
indicated by a byte pointer, and a byte count. It prints the individual bytes in hexadecimal. The C formatting
directive “%.2x” indicates that an integer should be printed in hexadecimal with at least two digits.
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code/data/show-bytes.c

1 #include <stdio.h>
2

3 typedef unsigned char *byte_pointer;
4

5 void show_bytes(byte_pointer start, int len)
6 {
7 int i;
8 for (i = 0; i < len; i++)
9 printf(" %.2x", start[i]);

10 printf("\n");
11 }
12

13 void show_int(int x)
14 {
15 show_bytes((byte_pointer) &x, sizeof(int));
16 }
17

18 void show_float(float x)
19 {
20 show_bytes((byte_pointer) &x, sizeof(float));
21 }
22

23 void show_pointer(void *x)
24 {
25 show_bytes((byte_pointer) &x, sizeof(void *));
26 }

code/data/show-bytes.c

Figure 2.3: Code to print the byte representation of program objects. This code uses casting to cir-
cumvent the type system. Similar functions are easily defined for other data types.
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New to C?: Naming data types with typedef.
The typedef declaration in C provides a way of giving a name to a data type. This can be a great help in improving
code readability, since deeply nested type declarations can be difficult to decipher.

The syntax for typedef is exactly like that of declaring a variable, except that it uses a type name rather than a
variable name. Thus, the declaration of byte_pointer in Figure 2.3 has the same form as would the declaration
of a variable to type “unsigned char.”

For example, the declaration:

typedef int *int_pointer;
int_pointer ip;

defines type “int_pointer” to be a pointer to an int, and declares a variable ip of this type. Alternatively, we
could declare this variable directly as:

int *ip;

End.

New to C?: Formatted printing with printf.
The printf function (along with its cousins fprintf and sprintf) provides a way to print information with
considerable control over the formatting details. The first argument is a format string, while any remaining argu-
ments are values to be printed. Within the format string, each character sequence starting with ‘%’ indicates how to
format the next argument. Typical examples include ‘%d’ to print a decimal integer and ‘%f’ to print a floating-point
number, and ‘%c’ to print a character having the character code given by the argument. End.

New to C?: Pointers and arrays.
In function show_bytes (Figure 2.3) we see the close connection between pointers and arrays, as will be discussed
in detail in Section 3.8. We see that this function has an argument start of type byte_pointer (which has
been defined to be a pointer to unsigned char,) but we see the array reference start[i] on line 9. In C, we
can use reference a pointer with array notation, and we can reference arrays with pointer notation. In this example,
the reference start[i] indicates that we want to read the byte that is i positions beyond the location pointed to
by start. End.

Procedures show_int,show_float, and show_pointerdemonstrate how to use procedure show_bytes
to print the byte representations of C program objects of type int, float, and void *, respectively. Ob-
serve that they simply pass show_bytes a pointer &x to their argument x, casting the pointer to be of type
“unsigned char *.” This cast indicates to the compiler that the program should consider the pointer to
be to a sequence of bytes rather than to an object of the original data type. This pointer will then be to the
lowest byte address used by the object.

New to C?: Pointer creation and dereferencing.
In lines 15, 20, and 25 of Figure 2.3 we see uses of two operations that are unique to C and C++. The C “address of”
operator & creates a pointer. On all three lines, the expression &x creates a pointer to the location holding variable
x. The type of this pointer depends on the type of x, and hence these three pointers are of type int *, float *,
and void **, respectively. (Data type void * is a special kind of pointer with no associated type information.)

The cast operator converts from one data type to another. Thus, the cast (byte_pointer) &x indicates that
whatever type the pointer &x had before, it now is a pointer to data of type unsigned char. End.
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code/data/show-bytes.c

1 void test_show_bytes(int val)
2 {
3 int ival = val;
4 float fval = (float) ival;
5 int *pval = &ival;
6 show_int(ival);
7 show_float(fval);
8 show_pointer(pval);
9 }

code/data/show-bytes.c

Figure 2.4: Byte representation examples. This code prints the byte representations of sample data
objects.

These procedures use the C operator sizeof to determine the number of bytes used by the object. In
general, the expression sizeof(

�
) returns the number of bytes required to store an object of type

�
.

Using sizeof rather than a fixed value is one step toward writing code that is portable across different
machine types.

We ran the code shown in Figure 2.4 on several different machines, giving the results shown in Figure 2.5.
The following machines were used:

Linux: Intel Pentium II running Linux.

NT: Intel Pentium II running Windows-NT.

Sun: Sun Microsystems UltraSPARC running Solaris.

Alpha: Compaq Alpha 21164 running Tru64 Unix.

Our sample integer argument 12,345 has hexadecimal representation 0x00003039. For the int data, we
get identical results for all machines, except for the byte ordering. In particular, we can see that the least
significant byte value of 0x39 is printed first for Linux, NT, and Alpha, indicating little-endian machines,
and last for Sun, indicating a big-endian machine. Similarly, the bytes of the float data are identical,
except for the byte ordering. On the other hand, the pointer values are completely different. The different
machine/operating system configurations use different conventions for storage allocation. One feature to
note is that the Linux and Sun machines use four-byte addresses, while the Alpha uses eight-byte addresses.

Observe that although the floating point and the integer data both encode the numeric value 12,345, they
have very different byte patterns: 0x00003039 for the integer, and 0x4640E400 for floating point. In
general, these two formats use different encoding schemes. If we expand these hexadecimal patterns into
binary form and shift them appropriately, we find a sequence of 13 matching bits, indicated by a sequence
of asterisks, as follows:

0 0 0 0 3 0 3 9
00000000000000000011000000111001
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Machine Value Type Bytes (hex)
Linux 12,345 int 39 30 00 00

NT 12,345 int 39 30 00 00
Sun 12,345 int 00 00 30 39

Alpha 12,345 int 39 30 00 00
Linux

� � � � � ����� float 00 e4 40 46
NT

� � � � � ����� float 00 e4 40 46
Sun

� � � � � ����� float 46 40 e4 00
Alpha

� � � � � ����� float 00 e4 40 46
Linux &ival int * 3c fa ff bf

NT &ival int * 1c ff 44 02
Sun &ival int * ef ff fc e4

Alpha &ival int * 80 fc ff 1f 01 00 00 00

Figure 2.5: Byte representations of different data values. Results for int and float are identical,
except for byte ordering. Pointer values are machine-dependent.

*************
4 6 4 0 E 4 0 0

01000110010000001110010000000000

This is not coincidental. We will return to this example when we study floating-point formats.

Practice Problem 2.5:

Consider the following three calls to show_bytes:

int val = 0x12345678;
byte_pointer valp = (byte_pointer) &val;
show_bytes(valp, 1); /* A. */
show_bytes(valp, 2); /* B. */
show_bytes(valp, 3); /* C. */

Indicate which of the following values would be printed by each call on a little-endian machine and on
a big-endian machine:

A. Little endian: Big endian:

B. Little endian: Big endian:

C. Little endian: Big endian:

Practice Problem 2.6:

Using show_int and show_float, we determine that the integer 3490593 has hexadecimal repre-
sentation 0x00354321, while the floating-point number

� ��� ��� � ��� �
has hexadecimal representation

representation 0x4A550C84.
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A. Write the binary representations of these two hexadecimal values.

B. Shift these two strings relative to one another to maximize the number of matching bits.

C. How many bits match? What parts of the strings do not match?

2.1.5 Representing Strings

A string in C is encoded by an array of characters terminated by the null (having value 0) character. Each
character is represented by some standard encoding, with the most common being the ASCII character code.
Thus, if we run our routine show_bytes with arguments "12345" and 6 (to include the terminating
character), we get the result 31 32 33 34 35 00. Observe that the ASCII code for decimal digit �
happens to be 0x3 � , and that the terminating byte has the hex representation 0x00. This same result would
be obtained on any system using ASCII as its character code, independent of the byte ordering and word
size conventions. As a consequence, text data is more platform-independent than binary data.

Aside: Generating an ASCII table.
You can display a table showing the ASCII character code by executing the command man ascii. End Aside.

Practice Problem 2.7:

What would be printed as a result of the following call to show_bytes?

char *s = "ABCDEF";
show_bytes(s, strlen(s));

Note that letters ‘A’ through ‘Z’ have ASCII codes 0x41 through 0x5A.

Aside: The Unicode character set.
The ASCII character set is suitable for encoding English language documents, but it does not have much in the way
of special characters, such as the French ‘ç.’ It is wholly unsuited for encoding documents in languages such as
Greek, Russian, and Chinese. Recently, the 16-bit Unicode character set has been adopted to support documents in
all languages. This doubling of the character set representation enables a very large number of different characters
to be represented. The Java programming language uses Unicode when representing character strings. Program
libraries are also available for C that provide Unicode versions of the standard string functions such as strlen and
strcpy. End Aside.

2.1.6 Representing Code

Consider the following C function:

1 int sum(int x, int y)
2 {
3 return x + y;
4 }
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˜

0 1

1 0

& 0 1

0 0 0

1 0 1

| 0 1

0 0 1

1 1 1

ˆ 0 1

0 0 1

1 1 0

Figure 2.6: Operations of Boolean algebra. Binary values 1 and 0 encode logic values TRUE and FALSE,
while operations ˜, &, |, and ˆ encode logical operations NOT, AND, OR, and EXCLUSIVE-OR, respectively.

When compiled on our sample machines, we generate machine code having the following byte representa-
tions:

Linux: 55 89 e5 8b 45 0c 03 45 08 89 ec 5d c3

NT: 55 89 e5 8b 45 0c 03 45 08 89 ec 5d c3

Sun: 81 C3 E0 08 90 02 00 09

Alpha: 00 00 30 42 01 80 FA 6B

Here we find that the instruction codings are different, except for the NT and Linux machines. Different
machine types use different and incompatible instructions and encodings. The NT and Linux machines
both have Intel processors and hence support the same machine-level instructions. In general, however, the
structure of an executable NT program differs from a Linux program, and hence the machines are not fully
binary compatible. Binary code is seldom portable across different combinations of machine and operating
system.

A fundamental concept of computer systems is that a program, from the perspective of the machine, is
simply a sequence of bytes. The machine has no information about the original source program, except
perhaps some auxiliary tables maintained to aid in debugging. We will see this more clearly when we study
machine-level programming in Chapter 3.

2.1.7 Boolean Algebras and Rings

Since binary values are at the core of how computers encode, store, and manipulate information, a rich body
of mathematical knowledge has evolved around the study of the values 0 and 1. This started with the work
of George Boole around 1850 and thus is known as Boolean algebra. Boole observed that by encoding logic
values TRUE and FALSE as binary values 1 and 0, he could formulate an algebra that captures the properties
of propositional logic.

There is an infinite number of different Boolean algebras, where the simplest is defined over the two-element
set

� � � ���
. Figure 2.6 defines several operations in this Boolean algebra. Our symbols for representing these

operations are chosen to match those used by the C bit-level operations, as will be discussed later. The
Boolean operation ˜ corresponds to the logical operation NOT, denoted in propositional logic as � . That
is, we say that �

�
is true when

�
is not true, and vice-versa. Correspondingly, �̃ equals 1 when � equals

0, and vice-versa. Boolean operation & corresponds to the logical operation AND, denoted in propositional
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Shared properties
Property Integer ring Boolean algebra
Commutativity � ��� � � � � � | � � � | �� � � � � � � � & � � � & �
Associativity � � ��� � ��� ��� � � � ��� � � � | � � | � ��� | � � | � �

� � � � � � � ��� � � � � � � � � & � � & � ��� & � � & � �
Distributivity � � � � ��� � � � � � � � � � � � � � � & � � | � � � � � & � � | � � & � �
Identities � � � ��� � | � ���

� � � ��� � & � ���
Annihilator � � � � � � & � � �
Cancellation � � � � � ��� ˜ � ˜ � � ���

Unique to Rings
Inverse � � � � � �

—

Unique to Boolean Algebras
Distributivity — � | � � & � � � � � | � � & � � | � �
Complement — � | ˜ � � �

— � & ˜ � � �
Idempotency — � & � ���

— � | � ���
Absorption — � | � � & � � ���

— � & � � | � � ���
DeMorgan’s laws — ˜ � � & � � � ˜ � | ˜ �

— ˜ � � | � � � ˜ � & ˜ �

Figure 2.7: Comparison of integer ring and Boolean algebra. The two mathematical structures share
many properties, but there are key differences, particularly between � and ˜.

logic as � . We say that
� �	� holds when both

�
and � are true. Correspondingly, � & � equals 1 only when

� � �
and � � �

. Boolean operation | corresponds to the logical operation OR, denoted in propositional
logic as 
 . We say that

� 
�� holds when either
�

or � are true. Correspondingly, � | � equals 1
when either � � �

or � � �
. Boolean operation ˆ corresponds to the logical operation EXCLUSIVE-OR,

denoted in propositional logic as � . We say that
� ��� holds when either

�
or � are true, but not both.

Correspondingly, � ˆ � equals 1 when either � � �
and � � �

, or � � �
and � � �

.

Claude Shannon, who later founded the field of information theory, first made the connection between
Boolean algebra and digital logic. In his 1937 master’s thesis, he showed that Boolean algebra could be
applied to the design and analysis of networks of electromechanical relays. Although computer technology
has advanced considerably since, Boolean algebra still plays a central role in the design and analysis of
digital systems.

There are many parallels between integer arithmetic and Boolean algebra, as well as several important dif-
ferences. In particular, the set of integers, denoted 
 , forms a mathematical structure known as a ring,
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denoted
� 
 � � � � � � � � � ��� , with addition serving as the sum operation, multiplication as the product op-

eration, negation as the additive inverse, and elements 0 and 1 serving as the additive and multiplicative
identities. The Boolean algebra

� � � � ��� �
|
�
&
�
˜
� � � ���

has similar properties. Figure 2.7 highlights properties
of these two structures, showing the properties that are common to both and those that are unique to one or
the other. One important difference is that ˜ � is not an inverse for � under |.

Aside: What good is abstract algebra?
Abstract algebra involves identifying and analyzing the common properties of mathematical operations in different
domains. Typically, an algebra is characterized by a set of elements, some of its key operations, and some im-
portant elements. As an example, modular arithmetic also forms a ring. For modulus � , the algebra is denoted�����
	��
��	�����	�����	���	����

, with components defined as follows:��� � ����	�� 	�!"!"!�	 � �#��$
% � �'& � % � &)(+*�, �% ��� & � % � &)(+*�, ���� % � - ��	 % �.�

� � % 	 %0/ �
Even though modular arithmetic yields different results from integer arithmetic, it has many of the same mathemat-
ical properties. Other well-known rings include rational and real numbers. End Aside.

If we replace the OR operation of Boolean algebra by the EXCLUSIVE-OR operation, and the complement
operation ˜with the identity operation 1 —where 1 � � � ��� for all � —we have a structure

� � � � ��� �
ˆ
�
&
� 1 � � � ��� .

This structure is no longer a Boolean algebra—in fact it’s a ring. It can be seen to be a particularly simple
form of the ring consisting of all integers

� � � � � � � � � � � ���
with both addition and multiplication performed

modulo � . In this case, we have � � � . That is, the Boolean AND and EXCLUSIVE-OR operations cor-
respond to multiplication and addition modulo 2, respectively. One curious property of this algebra is that
every element is its own additive inverse: � ˆ 1 � � � ��� ˆ � � �

.

Aside: Who, besides mathematicians, care about Boolean rings?
Every time you enjoy the clarity of music recorded on a CD or the quality of video recorded on a DVD, you are
taking advantage of Boolean rings. These technologies rely on error-correcting codes to reliably retrieve the bits
from a disk even when dirt and scratches are present. The mathematical basis for these error-correcting codes is a
linear algebra based on Boolean rings. End Aside.

We can extend the four Boolean operations to also operate on bit vectors, i.e., strings of 0s and 1s of
some fixed length � . We define the operations over bit vectors according their applications to the matching
elements of the arguments. For example, we define

� � ��� � � � ��� � � � � ��� � � � & � � ��� � � � ��� � � � � ��� � � � to be
� � ��� � &� �	� � � � �	� � & � ��� � � � � ��� � � & � � � , and similarly for operations ˜, |, and ˆ. Letting

� � � ��� �
denote the set

of all strings of 0s and 1s having length � , and �
�

denote the string consisting of � repetitions of symbol� , then one can see that the resulting algebras:
� � � � ��� � �

|
�
&
�
˜
� � � � � � �

and
� � � � ��� � �

ˆ
�
&
� 1 � � � � � � �

form
Boolean algebras and rings, respectively. Each value of � defines a different Boolean algebra and a different
Boolean ring.

Aside: Are Boolean rings the same as modular arithmetic?
The two-element Boolean ring

�2����	���$�	
ˆ
	
&
	435	���	"���

is identical to the ring of integers modulo two
���'67	��86�	 �96�	��'6�	���	����

.
The generalization to bit vectors of length : , however, yields a very different ring from modular arithmetic. End
Aside.
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Practice Problem 2.8:

Fill in the following table showing the results of evaluating Boolean operations on bit vectors.

Operation Result� � ������������������ � �����������������
˜ �
˜
�

� & �� | �� ˆ �

One useful application of bit vectors is to represent finite sets. For example, we can denote any subset��� � � � � � � � � � � � ���
as a bit vector

� � ��� � � � � � � � � � � � � , where �	� � �
if and only if

��
 �
. For example,

(recalling that we write � ��� � on the left and � � on the right), we have � � � � ��� � � � � �
�
representing the

set
� � � � � � � � � 	 �

, and
� � � � � � � � � � �
�

representing the set � � � � � � � � � 	 � . Under this interpretation,
Boolean operations | and & correspond to set union and intersection, respectively, and ˜ corresponds to set
complement. For example, the operation � & � yields bit vector

� � � � � � � � �
�
, while

��
 � � � � � 	 �
.

In fact, for any set � , the structure
��� ��� � ��� � 
 � ��� � � � forms a Boolean algebra, where

� ��� � denotes the
set of all subsets of � , and denotes the set complement operator. That is, for any set

�
, its complement is

the set
� � � � 
 ��� ���
 � �

. The ability to represent and manipulate finite sets using bit vector operations
is a practical outcome of a deep mathematical principle.

Practice Problem 2.9:

Computers generate color pictures on a video screen or liquid crystal display by mixing three different
colors of light: red, green, and blue. Imagine a simple scheme, with three different lights, each of which
can be turned on or off, projecting onto a glass screen:

Glass screen

Observer

Green

Blue

Red

Light sources

We can then create eight different colors based on the absence (0) or presence (1) of light sources � , � ,
and � :
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� � � Color
0 0 0 Black
0 0 1 Blue
0 1 0 Green
0 1 1 Cyan
1 0 0 Red
1 0 1 Magenta
1 1 0 Yellow
1 1 1 White

This set of colors forms an eight-element Boolean algebra.

A. The complement of a color is formed by turning off the lights that are on and turning on the lights
that are off. What would be the complements of the eight colors listed above?

B. What colors correspond to Boolean values
���

and
���

for this algebra?

C. Describe the effect of applying Boolean operations on the following colors:

Blue | Red �
Magenta & Cyan �

Green ˆ White �

2.1.8 Bit-Level Operations in C

One useful feature of C is that it supports bit-wise Boolean operations. In fact, the symbols we have used
for the Boolean operations are exactly those used by C: | for OR, & for AND, ˜ for NOT, and ˆ for
EXCLUSIVE-OR. These can be applied to any “integral” data type, that is, one declared as type char
or int, with or without qualifiers such as short, long, or unsigned. Here are some examples of
expression evaluations:

C expression Binary expression Binary result C result
˜0x41 ˜

� � � � � � � � �
� � � � ��������� � �
0xBE

˜0x00 ˜
� � � � � � � � � � � ���������������
�

0xFF
0x69 & 0x55

� � ��� � � � � �
�
&
� � � � � � � � �
� � � � � � � � � �
�

0x41
0x69 | 0x55

� � ��� � � � � �
�
|
� � � � � � � � �
� � � ��������� � �
�

0x7D

As our examples show, the best way to determine the effect of a bit-level expression is to expand the
hexadecimal arguments to their binary representations, perform the operations in binary, and then convert
back to hexadecimal.

Practice Problem 2.10:

To show how the ring properties of ˆ can be useful, consider the following program:

1 void inplace_swap(int *x, int *y)
2 {
3 *x = *x ˆ *y; /* Step 1 */
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4 *y = *x ˆ *y; /* Step 2 */
5 *x = *x ˆ *y; /* Step 3 */
6 }

As the name implies, we claim that the effect of this procedure is to swap the values stored at the
locations denoted by pointer variables x and y. Note that unlike the usual technique for swapping two
values, we do not need a third location to temporarily store one value while we are moving the other.
There is no performance advantage to this way of swapping. It is merely an intellectual amusement.

Starting with values � and
�

in the locations pointed to by x and y, respectively, fill in the table that
follows giving the values stored at the two locations after each step of the procedure. Use the ring
properties to show that the desired effect is achieved. Recall that every element is its own additive
inverse (that is, � ˆ � � �

).

Step *x *y
Initially � �
Step 1
Step 2
Step 3

One common use of bit-level operations is to implement masking operations, where a mask is a bit pattern
that indicates a selected set of bits within a word. As an example, the mask 0xFF (having 1s for the least
significant eight bits) indicates the low-order byte of a word. The bit-level operation x & 0xFF yields a
value consisting of the least significant byte of x, but with all other bytes set to 0. For example, with x �
0x89ABCDEF, the expression would yield 0x000000EF. The expression ˜0 will yield a mask of all 1s,
regardless of the word size of the machine. Although the same mask can be written 0xFFFFFFFF for a
32-bit machine, such code is not as portable.

Practice Problem 2.11:

Write C expressions for the following values, with the results for x � 0x98FDECBA and a 32-bit word
size shown in square brackets:

A. The least significant byte of x, with all other bits set to 1 [0xFFFFFFBA].

B. The complement of the least significant byte of x, with all other bytes left unchanged [0x98FDEC45].

C. All but the least significant byte of x, with the least significant byte set to 0 [0x98FDEC00].

Although our examples assume a 32-bit word size, your code should work for any word size ����� .

Practice Problem 2.12:

The Digital Equipment VAX computer was a very popular machine from the late 1970s until the late
1980s. Rather than instructions for Boolean operations AND and OR, it had instructions bis (bit set)
and bic (bit clear). Both instructions take a data word x and a mask word m. They generate a result
z consisting of the bits of x modified according to the bits of m. With bis, the modification involves
setting z to 1 at each bit position where m is 1. With bic, the modification involves setting z to 0 at
each bit position where m is 1.

We would like to write C functions bis and bic to compute the effect of these two instructions. Fill in
the missing expressions in the following code using the bit-level operations of C:
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/* Bit Set */
int bis(int x, int m)
{

/* Write an expression in C that computes the effect of bit set */
int result = ___________;
return result;

}

/* Bit Clear */
int bic(int x, int m)
{

/* Write an expression in C that computes the effect of bit clear */
int result = ___________;
return result;

}

2.1.9 Logical Operations in C

C also provides a set of logical operators ||, &&, and !, which correspond to the OR, AND, and NOT

operations of propositional logic. These can easily be confused with the bit-level operations, but their
function is quite different. The logical operations treat any nonzero argument as representing TRUE and
argument 0 as representing FALSE. They return either 1 or 0, indicating a result of either TRUE or FALSE,
respectively. Here are some examples of expression evaluations:

Expression Result
!0x41 0x00
!0x00 0x01
!!0x41 0x01
0x69 && 0x55 0x01
0x69 || 0x55 0x01

Observe that a bit-wise operation will have behavior matching that of its logical counterpart only in the
special case in which the arguments are restricted to 0 or 1.

A second important distinction between the logical operators && and || versus their bit-level counterparts
& and | is that the logical operators do not evaluate their second argument if the result of the expression
can be determined by evaluating the first argument. Thus, for example, the expression a && 5/a will
never cause a division by zero, and the expression p && *p++will never cause the dereferencing of a null
pointer.

Practice Problem 2.13:

Suppose that x and y have byte values 0x66 and 0x93, respectively. Fill in the following table indicat-
ing the byte values of the different C expressions:
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Expression Value Expression Value
x & y x && y
x | y x || y

˜x | ˜y !x || !y
x & !y x && ˜y

Practice Problem 2.14:

Using only bit-level and logical operations, write a C expression that is equivalent to x == y. In other
words, it will return 1 when x and y are equal and 0 otherwise.

2.1.10 Shift Operations in C

C also provides a set of shift operations for shifting bit patterns to the left and to the right. For an operand
x having bit representation

� � � � ��� � � � � � � � ��� � �
� , the C expression x << k yields a value with bit repre-
sentation

� � � � � � � � � � � � � � � � � ��� � � � � � � � � � � . That is, x is shifted
�

bits to the left, dropping off the
�

most
significant bits and filling the right end with

�
0s. The shift amount should be a value between

�
and � � �

.
Shift operations group from left to right, so x << j << k is equivalent to (x << j) << k. Be careful
about operator precedence: 1<<5 - 1 is evaluated as 1 << (5-1), not as (1<<5) - 1.

There is a corresponding right shift operation x >> k, but it has a slightly subtle behavior. Generally,
machines support two forms of right shift: logical and arithmetic. A logical right shift fills the left end
with

�
0s, giving a result

� � � � � ��� � � � � � � � � � � � � � � � � � � . An arithmetic right shift fills the left end with
�

repetitions of the most significant bit, giving a result
� � � � � � � � ��� � � � � � � � � � � � � � � � � � � � � � . This convention

might seem peculiar, but as we will see it is useful for operating on signed integer data.

The C standard does not precisely define which type of right shift should be used. For unsigned data (i.e.,
integral objects declared with the qualifier unsigned), right shifts must be logical. For signed data (the
default), either arithmetic or logical shifts may be used. This unfortunately means that any code assuming
one form or the other will potentially encounter portability problems. In practice, however, almost all
compiler/machine combinations use arithmetic right shifts for signed data, and many programmers assume
this to be the case.

Practice Problem 2.15:

Fill in the table below showing the effects of the different shift operations on single-byte quantities. The
best way to think about shift operations is to work with binary representations. Convert the initial values
to binary, perform the shifts, and then convert back to hexadecimal. Each of the answers should be 8
binary digits or 2 hexadecimal digits.

x x << 3 x >> 2 x >> 2
(Logical) (Arithmetic)

Hex Binary Binary Hex Binary Hex Binary Hex
0xF0
0x0F
0xCC
0x55
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C declaration Guaranteed Typical 32-bit
Minimum Maximum Minimum Maximum

char � 127 127 � 128 127
unsigned char 0 255 0 255
short [int] � 32,767 32,767 � 32,768 32,767
unsigned short [int] 0 63,535 0 63,535
int � 32,767 32,767 � 2,147,483,648 2,147,483,647
unsigned [int] 0 65,535 0 4,294,967,295
long [int] � 2,147,483,647 2,147,483,647 � 2,147,483,648 � � � ��� � � � � � �����
unsigned long [int] 0 4,294,967,295 0 4,294,967,295

Figure 2.8: C Integral data types. Text in square brackets is optional.

2.2 Integer Representations

In this section we describe two different ways bits can be used to encode integers—one that can only rep-
resent nonnegative numbers, and one that can represent negative, zero, and positive numbers. We will see
later that they are strongly related both in their mathematical properties and their machine-level implemen-
tations. We also investigate the effect of expanding or shrinking an encoded integer to fit a representation
with a different length.

2.2.1 Integral Data Types

C supports a variety of integral data types—ones that represent a finite range of integers. These are shown
in Figure 2.8. Each type has a size designator: char, short, int, and long, as well as an indication of
whether the represented number is nonnegative (declared as unsigned), or possibly negative (the default).
The typical allocations for these different sizes were given in Figure 2.2. As indicated in Figure 2.8, these
different sizes allow different ranges of values to be represented. The C standard defines a minimum range of
values each data type must be able to represent. As shown in the figure, a typical 32-bit machine uses a 32-bit
representation for data types int and unsigned, even though the C standard allows 16-bit representations.
As described in Figure 2.2, the Compaq Alpha uses a 64-bit word to represent long integers, giving an
upper limit of over

��� � � � � � � 	
for unsigned values, and a range of over �

��� ��� � � � � �
for signed values.

New to C?: Signed and unsigned numbers in C, C++, and Java.
Both C and C++ support signed (the default) and unsigned numbers. Java supports only signed numbers. End.

2.2.2 Unsigned and Two’s-Complement Encodings

Assume we have an integer data type of � bits. We write a bit vector as either �� , to denote the entire vector,
or as

� � ��� � � � ��� � � � � ��� � � � to denote the individual bits within the vector. Treating �� as a number written
in binary notation, we obtain the unsigned interpretation of �� . We express this interpretation as a function
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����� � (for “binary to unsigned,” length � ):

����� � � �� � ��
��� ��
��� � � � �

�
(2.1)

In this equation, the notation “
�� ” means that the left hand side is defined to be equal to the right hand side.

The function
����� � maps strings of 0s and 1s of length � to nonnegative integers. The least value is given

by bit vector
� � � � � � � � having integer value

�
, and the greatest value is given by bit vector

� ��� � � � �
� having
integer value

�	��

� � ���� ��� ���� � �
� � �

�
� �

. Thus, the function
����� � can be defined as a mapping����� ��� � � � ��� ��� � � � � � � � � � � ���

. Note that
����� � is a bijection—it associates a unique value to each

bit vector of length � ; conversely, each integer between 0 and �
�
� �

has a unique binary representation as
a bit vector of length � .

For many applications, we wish to represent negative values as well. The most common computer repre-
sentation of signed numbers is known as two’s-complement form. This is defined by interpreting the most
significant bit of the word to have negative weight. We express this interpretation as a function

����� � (for
“binary to two’s complement” length � ):

����� � � �� � �� � � ��� � �
��� �

�

�	� ��
��� � � � �

�
(2.2)

The most significant bit is also called the sign bit. When set to 1, the represented value is negative, and
when set to 0 the value is nonnegative. The least representable value is given by bit vector

� � � � � � � � (i.e.,
set the bit with negative weight but clear all others) having integer value

�	����� � �� � �
�	� �

. The greatest
value is given by bit vector

� � � � � � �
� , having integer value
�	��

� � �� � �	� ���� � �

� � �
�	� �

� �
. Again, one

can see that
����� � is a bijection

����� ��� � � � ��� � � �
� �

�	� � � � � ��� � �	�
�
� ���

, associating a unique integer
in the representable range for each bit pattern.

Practice Problem 2.16:

Assuming � �
�
, we can assign a numeric value to each possible hexadecimal digit, assuming either

an unsigned or two’s-complement interpretation. Fill in the following table according to these inter-
pretations by writing out the nonzero powers of two in the summations shown in Equations 2.1 and
2.2: �

� �! #"%$'&
�
�)( �! +*,$-&

�
�+(

Hexadecimal Binary
A [1010] �/. � �'0 � ���

� �
. � �'0 � � �
0
3
8
C
F

Figure 2.9 shows the bit patterns and numeric values for several “interesting” numbers for different word
sizes. The first three give the ranges of representable integers. A few points are worth highlighting. First, the
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Quantity Word size �
8 16 32 64��� 

� � 0xFF 0xFFFF 0xFFFFFFFF 0xFFFFFFFFFFFFFFFF
255 65,535 4,294,967,295 18,446,744,073,709,551,615�	��

� � 0x7F 0x7FFF 0x7FFFFFFF 0x7FFFFFFFFFFFFFFF
127 32,767 2,147,483,647 9,223,372,036,854,775,807�	����� � 0x80 0x8000 0x80000000 0x8000000000000000
� 128 � 32,768 � 2,147,483,648 � 9,223,372,036,854,775,808

� 1 0xFF 0xFFFF 0xFFFFFFFF 0xFFFFFFFFFFFFFFFF�
0x00 0x0000 0x00000000 0x0000000000000000

Figure 2.9: “Interesting” numbers. Both numeric values and hexadecimal representations are shown.

two’s-complement range is asymmetric: � �	����� � � � � �	� 

� � � � �
, that is, there is no positive counterpart to�	����� � . As we shall see, this leads to some peculiar properties of two’s-complement arithmetic and can be

the source of subtle program bugs. Second, the maximum unsigned value is just over twice the maximum
two’s-complement value:

�	��

� � � � �	��

� � � �
. This follows from the fact that two’s-complement

notation reserves half of the bit patterns to represent negative values. The other cases are the constants �
�

and
�
. Note that �

�
has the same bit representation as

��� 
/� � —a string of all 1s. Numeric value
�

is
represented as a string of all 0s in both representations.

The C standard does not require signed integers to be represented in two’s-complement form, but nearly all
machines do so. To keep code portable, one should not assume any particular range of representable values
or how they are represented, beyond the ranges indicated in Figure 2.2. The C library file <limits.h>
defines a set of constants delimiting the ranges of the different integer data types for the particular machine
on which the compiler is running. For example, it defines constants INT_MAX, INT_MIN, and UINT_MAX
describing the ranges of signed and unsigned integers. For a two’s-complement machine in which data type
int has � bits, these constants correspond to the values of

�	��

� � ,
�	����� � , and

�	��

� � .

Aside: Alternative representations of signed numbers.
There are two other standard representations for signed numbers:

Ones’ Complement: This is the same as two’s complement, except that the most significant bit has weight������������� �
	
rather than

�������
�
:����� � ���� 	 !� � � ����� ��� ����� �#�
	 � ��� 6� � ��� �

� � �
Sign-Magnitude: The most significant bit is a sign bit that determines whether the remaining bits should

be given negative or positive weight:����� � ���� 	 !� � �8�
	��
 "!$#�%'& ��� 6� � �"� �
� � �)(

Both of these representations have the curious property that there are two different encodings of the number 0. For
both representations, * � ��%+%+%���, is interpreted as

�
�
. The value

���
can be represented in sign-magnitude form as* �"��%-%+%���, and in ones’ complement as * � �.%+%+%��-, . Although machines based on ones’ complement representations
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Weight 12,345 � 12,345 53,191
Bit Value Bit Value Bit Value�
1

�
1

�
1

�
2 0 0 1 2 1 2
4 0 0 1 4 1 4
8 1 8 0 0 0 0

16 1 16 0 0 0 0
32 1 32 0 0 0 0
64 0 0 1 64 1 64

128 0 0 1 128 1 128
256 0 0 1 256 1 256
512 0 0 1 512 1 512

1,024 0 0 1 1,024 1 1,024
2,048 0 0 1 2,048 1 2,048
4,096 1 4096 0 0 0 0
8,192 1 8192 0 0 0 0

16,384 0 0 1 16,384 1 16,384
�
� � � � 	 � 0 0 1 � 32,768 1 32,768

Total 12,345 � 12,345 53,191

Figure 2.10: two’s-complement representations of 12,345 and � 12,345, and unsigned representation
of 53,191. Note that the latter two have identical bit representations.

were built in the past, almost all modern machines use two’s complement. We will see that sign-magnitude encoding
is used with floating-point numbers.

Note the different position of apostrophes: Two’s complement versus Ones’ complement. End Aside.

As an example, consider the following code:

1 short int x = 12345;
2 short int mx = -x;
3

4 show_bytes((byte_pointer) &x, sizeof(short int));
5 show_bytes((byte_pointer) &mx, sizeof(short int));

When run on a big-endian machine, this code prints 30 39 and cf c7, indicating that x has hexadecimal
representation 0x3039, while mx has hexadecimal representation 0xCFC7. Expanding these into binary
we get bit patterns

� � � ��� � � � � � � ����� � � �
�
for x and

� ��� � � ����������� � � � ��� �
�
for mx. As Figure 2.10 shows,

Equation 2.2 yields values 12,345 and � 12,345 for these two bit patterns.

Practice Problem 2.17:

In Chapter 3, we will look at listings generated by a disassembler, a program that converts an executable
program file back to a more readable ASCII form. These files contain many hexadecimal numbers,



52 CHAPTER 2. REPRESENTING AND MANIPULATING INFORMATION

typically representing values in two’s-complement form. Being able to recognize these numbers and
understand their significance (for example, whether they are negative or positive) is an important skill.

For the lines labeled A–K (on the right) in the following listing, convert the hexadecimal values shown
to the right of the instruction names (sub, push, mov, and add) into their decimal equivalents.

80483b7: 81 ec 84 01 00 00 sub $0x184,%esp A.

80483bd: 53 push %ebx
80483be: 8b 55 08 mov 0x8(%ebp),%edx B.

80483c1: 8b 5d 0c mov 0xc(%ebp),%ebx C.

80483c4: 8b 4d 10 mov 0x10(%ebp),%ecx D.

80483c7: 8b 85 94 fe ff ff mov 0xfffffe94(%ebp),%eax E.

80483cd: 01 cb add %ecx,%ebx
80483cf: 03 42 10 add 0x10(%edx),%eax F.

80483d2: 89 85 a0 fe ff ff mov %eax,0xfffffea0(%ebp) G.

80483d8: 8b 85 10 ff ff ff mov 0xffffff10(%ebp),%eax H.

80483de: 89 42 1c mov %eax,0x1c(%edx) I.

80483e1: 89 9d 7c ff ff ff mov %ebx,0xffffff7c(%ebp) J.

80483e7: 8b 42 18 mov 0x18(%edx),%eax K.

2.2.3 Conversions Between Signed and Unsigned

Since both
����� � and

����� � are bijections, they have well-defined inverses. Define
� �'� � to be

����� � �� ,
and

� �'� � to be
����� � �� . These functions give the unsigned or two’s-complement bit patterns for a numeric

value. Given an integer � in the range
� � � � �

�
, the function

� �'� � � � � gives the unique � -bit unsigned
representation of � . Similarly, when � is in the range � �

��� � � � � �
�	� �

, the function
� �'� � � � � gives the

unique � -bit two’s-complement representation of � . Observe that for values in the range
��� � � �

�	� �
,

both of these functions will yield the same bit representation—the most significant bit will be 0, and hence
it does not matter whether this bit has positive or negative weight.

Consider the function
� ��� � � � � �� ����� � � � �'� � � � � � , which takes a number between

�
and �

�
� �

and
yields a number between � �

�	� �
and �

�	� �
� �

, where the two numbers have identical bit representa-
tions, except that the argument is unsigned, while the result has a two’s-complement representation. Con-
versely, the function

� ��� � � � � �� ����� � � � � � � � � � � yields the unsigned number having the same bit
representation as the two’s-complement value of x. For example, as Figure 2.10 indicates, the 16-bit,
two’s-complement representation of � 12,345 is identical to the 16-bit, unsigned representation of 53,191.
Therefore,

� ��� ��	 � � � � � � � � � � ��� � ��� �
, and

� ��� ��	 � ��� � ��� � � � � � � � � � � .

These two functions might seem to be of only academic interest, but they actually have great practical
importance—they formally define the effect of casting between signed and unsigned values in C. For exam-
ple, consider executing the following code on a two’s-complement machine:

1 int x = -1;
2 unsigned ux = (unsigned) x;

This code will set ux to
�	��

� � , where � is the number of bits in data type int, since by Figure 2.9 we

can see that the � -bit two’s-complement representation of �
�

has the same bit representation as
��� 

� � . In
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2w

0

2w–1

2w

Unsigned

Two’s
complement 0

+2w–1

–2w–1

0

+2w–1

–2w–1

Figure 2.11: Conversion from two’s complement to unsigned. Function *  #" converts negative num-
bers to large positive numbers.

general, casting from a signed value x to unsigned value (unsigned)x is equivalent to applying function� ���
. The cast does not change the bit representation of the argument, just how these bits are interpreted

as a number. Similarly, casting from unsigned value u to signed value (int) u is equivalent to applying
function

� ���
.

Practice Problem 2.18:

Using the table you filled in when solving Problem 2.16, fill in the following table describing the function*  "�$ :
� *# "%$'&�� (
� �

�
�

�
�

�
�

�

�

To get a better understanding of the relation between a signed number � and its unsigned counterpart� ��� � � � � , we can use the fact that they have identical bit representations to derive a numerical rela-
tionship. Comparing Equations 2.1 and 2.2, we can see that for bit pattern �� , if we compute the differ-
ence

��� � � � �� � � ����� � � �� � , the weighted sums for bits from 0 to � � � will cancel each other, leav-
ing a value:

����� � � �� � � ����� � � �� � � � �	� � � �
��� �

� � �
�	� �

� � � ��� � �
�

. This gives a relationship����� � � �� � � � ��� � �
� � ����� � � �� � . If we let ��� ����� � � �� � , we then have��� � � � � �'� � � � � � � � ��� � � � � � ���	� � �

�
� � (2.3)

This relationship is useful for proving relationships between unsigned and two’s-complement arithmetic. In
the two’s-complement representation of � , bit � ��� � determines whether or not � is negative, giving

� ��� � � � � �
� � � �

� � � � �
� � ��� � (2.4)

Figure 2.11 illustrates the behavior of function
� ���

. As it illustrates, when mapping a signed number
to its unsigned counterpart, negative numbers are converted to large positive numbers, while nonnegative
numbers remain unchanged.
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0

2w–1

2w

Unsigned
Two’s
complement0

+2w–1

–2w–1

Figure 2.12: Conversion from unsigned to two’s complement. Function "  )* converts numbers greater
than � � � 0 � �

to negative values.

Practice Problem 2.19:

Explain how Equation 2.4 applies to the entries in the table you generated when solving Problem 2.18.

Going in the other direction, we wish to derive the relationship between an unsigned number � and its signed
counterpart

� ��� � � � � . If we let ��� ��� � � � �� � , we have����� � � � �'� � � � � � � � ��� � � � � � � ����� � �
�
� � (2.5)

In the unsigned representation of � , bit � ��� � determines whether or not � is greater than or equal to �
�	� �

,
giving

� ��� � � � � �
� � � � � �

��� �
� � �

� � � � �
��� � (2.6)

This behavior is illustrated in Figure 2.12. For small ( � �
��� �

) numbers, the conversion from unsigned to
signed preserves the numeric value. For large ( � �

��� �
) the number is converted to a negative value.

To summarize, we can consider the effects of converting in both directions between unsigned and two’s-
complement representations. For values in the range

� � � � �
��� �

, we have
� ��� � � � � � � and� ��� � � � � � � . That is, numbers in this range have identical unsigned and two’s-complement represen-

tations. For values outside of this range, the conversions either add or subtract �
�

. For example, we have� ��� � � � � � � � � � �
� � ��� 
/� � —the negative number closest to 0 maps to the largest unsigned number.

At the other extreme, one can see that
� ��� � � �	����� � � � � � ��� � � �

� � �
��� � � �	� 

� � � �

—the most
negative number maps to an unsigned number just outside the range of positive, two’s-complement numbers.
Using the example of Figure 2.10, we can see that

� ��� ��	 � � � � � � � � � � 	 � � ��� 	 � � � � � � � � � ��� � ��� �
.

2.2.4 Signed vs. Unsigned in C

As indicated in Figure 2.8, C supports both signed and unsigned arithmetic for all of its integer data types.
Although the C standard does not specify a particular representation of signed numbers, almost all machines
use two’s complement. Generally, most numbers are signed by default. For example, when declaring a
constant such as 12345 or 0x1A2B, the value is considered signed. To create an unsigned constant, the
character ‘U’ or ‘u’ must be added as suffix (e.g., 12345U or 0x1A2Bu).
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C allows conversion between unsigned and signed. The rule is that the underlying bit representation is not
changed. Thus, on a two’s-complement machine, the effect is to apply the function

� ��� � when converting
from unsigned to signed, and

� ��� � when converting from signed to unsigned, where � is the number of
bits for the data type.

Conversions can happen due to explicit casting, such as in the following code:

1 int tx, ty;
2 unsigned ux, uy;
3

4 tx = (int) ux;
5 uy = (unsigned) ty;

Alternatively, they can happen implicitly when an expression of one type is assigned to a variable of another,
as in the following code:

1 int tx, ty;
2 unsigned ux, uy;
3

4 tx = ux; /* Cast to signed */
5 uy = ty; /* Cast to unsigned */

When printing numeric values with printf, the directives %d, %u, and %x should be used to print a number
as a signed decimal, an unsigned decimal, and in hexadecimal format, respectively. Note that printf does
not make use of any type information, and so it is possible to print a value of type int with directive %u
and a value of type unsignedwith directive %d. For example, consider the following code:

1 int x = -1;
2 unsigned u = 2147483648; /* 2 to the 31st */
3

4 printf("x = %u = %d\n", x, x);
5 printf("u = %u = %d\n", u, u);

When run on a 32-bit machine, it prints the following:

x = 4294967295 = -1
u = 2147483648 = -2147483648

In both cases, printf prints the word first as if it represented an unsigned number and second as if it
represented a signed number. We can see the conversion routines in action:

� ���
� � � � � � � ��� 

�

� � �
� � � � � � � 	 � � � � � and

� ���
� � � � �

�
� � �

�
�
� �

� � � � � �
� � �	�����

� � .
Some peculiar behavior arises due to C’s handling of expressions containing combinations of signed and
unsigned quantities. When an operation is performed where one operand is signed and the other is unsigned,
C implicitly casts the signed argument to unsigned and performs the operations assuming the numbers are
nonnegative. As we will see, this convention makes little difference for standard arithmetic operations, but
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Expression Type Evaluation
0 == 0U unsigned 1
-1 < 0 signed 1
-1 < 0U unsigned 0 *
2147483647 > -2147483648 signed 1
2147483647U > -2147483648 unsigned 0 *
2147483647 > (int) 2147483648U signed 1 *
-1 > -2 signed 1
(unsigned) -1 > -2 unsigned 1

Figure 2.13: Effects of C promotion rules on 32-bit machine. Nonintuitive cases marked by ‘*’. When
either operand of a comparison is unsigned, the other operand is implicitly cast to unsigned.

it leads to nonintuitive results for relational operators such as < and >. Figure 2.13 shows some sample
relational expressions and their resulting evaluations, assuming a 32-bit machine using two’s-complement
representation. The nonintuitive cases are marked by ‘*’. Consider the comparison -1 < 0U. Since the
second operand is unsigned, the first one is implicitly cast to unsigned, and hence the expression is equivalent
to the comparison 4294967295U < 0U (recall that

� ��� � � � � � � ��� 

� � ), which of course is false.
The other cases can be understood by similar analyses.

Practice Problem 2.20:

Assuming the expressions are evaluated on a 32-bit machine that uses two’s-complement arithmetic, fill
in the following table describing the effect of casting and relational operations, in the style of Figure
2.13:

Expression Type Evaluation
-2147483648 == 2147483648U
-2147483648 < -21474836487
(unsigned) -2147483648 < -21474836487
-2147483648 < 21474836487
(unsigned) -2147483648 < 21474836487

2.2.5 Expanding the Bit Representation of a Number

One common operation is to convert between integers having different word sizes, while retaining the same
numeric value. Of course, this may not be possible when the destination data type is too small to represent
the desired value. Converting from a smaller to a larger data type, however, should always be possible. To
convert an unsigned number to a larger data type, we can simply add leading 0s to the representation. this
operation is known as zero extension. For converting a two’s-complement number to a larger data type, the
rule is to perform a sign extension, adding copies of the most significant bit to the representation. Thus,
if our original value has bit representation

� � ��� � � � �	� � � � � �
� � � � , the expanded representation would be� ����� ��� � � ��� ���	� ��� ����� ��� ����� � � � � ��� � � � .
As an example, consider the following code:
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1 short sx = val; /* -12345 */
2 unsigned short usx = sx; /* 53191 */
3 int x = sx; /* -12345 */
4 unsigned ux = usx; /* 53191 */
5

6 printf("sx = %d:\t", sx);
7 show_bytes((byte_pointer) &sx, sizeof(short));
8 printf("usx = %u:\t", usx);
9 show_bytes((byte_pointer) &usx, sizeof(unsigned short));

10 printf("x = %d:\t", x);
11 show_bytes((byte_pointer) &x, sizeof(int));
12 printf("ux = %u:\t", ux);
13 show_bytes((byte_pointer) &ux, sizeof(unsigned));

When run on a 32-bit big-endian machine using two’s-complement representations, this code prints the
following output:

sx = -12345: cf c7
usx = 53191: cf c7
x = -12345: ff ff cf c7
ux = 53191: 00 00 cf c7

We see that, although the two’s-complement representation of � 12,345 and the unsigned representation of
53,191 are identical for a 16-bit word size, they differ for a 32-bit word size. In particular, � 12,345 has
hexadecimal representation 0xFFFFCFC7, while 53,191 has hexadecimal representation 0x0000CFC7.
The former has been sign extended—16 copies of the most significant bit 1, having hexadecimal represen-
tation 0xFFFF, have been added as leading bits. The latter has been extended with 16 leading 0s, having
hexadecimal representation 0x0000.

Can we justify that sign extension works? What we want to prove is that����� � � � � � � ��� � � � � �
� � ��� � � � ��� � � � �	� � � � � �
� � � � � � ����� � � � � �	� � � � ��� � � � � ��� � � � �
where in the expression on the left hand side, we have made

�
additional copies of bit � ��� � . The proof

follows by induction on
�

. That is, if we can prove that sign extending by one bit preserves the numeric
value, then this property will hold when sign extending by an arbitrary number of bits. Thus, the task
reduces to proving that����� � �

� � � � �	� � � � �	� � � � ��� � � � � ��� � � � � � ����� � � � � ��� � � � ��� � � � � �
� � � � �
Expanding the left hand expression with Equation 2.2 gives the following:

����� � �
� � � � �	� � � � �	� � � � ��� � � � � ��� � � � � � � � �	� � �

�
�

�	� ��
��� � � � �

�

� � ���	� � �
�
� ����� � �

��� �
�

��� ��
��� � � � �

�
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� � � �	� � � �
�
� �

�	� �
� �

��� ��
��� � � � �

�

� � � �	� � �
��� � �

�	� ��
��� � � � �

�

� ����� � � � � ��� � � � ��� � � � � � � � � � �
The key property we exploit is that � �

� � �
��� � � � �

�	� �
. Thus, the combined effect of adding a bit of

weight � �
�

and of converting the bit having weight � �
��� �

to be one with weight �
��� �

is to preserve the
original numeric value.

One point worth making is that the relative order of conversion from one data size to another and between
unsigned and signed can affect the behavior of a program. Consider the following additional code for our
previous example:

1 unsigned uy = x; /* Mystery! */
2

3 printf("uy = %u:\t", uy);
4 show_bytes((byte_pointer) &uy, sizeof(unsigned));

This portion of the code causes the following output to be printed:

uy = 4294954951: ff ff cf c7

This shows that the expressions:

(unsigned) (int) sx /* 4294954951 */

and

(unsigned) (unsigned short) sx /* 53191 */

produce different values, even though the original and the final data types are the same. In the former
expression, we first sign extend the 16-bit short to a 32-bit int, whereas zero extension is performed in
the latter expression.

Practice Problem 2.21:

Consider the following C functions:

int fun1(unsigned word)
{

return (int) ((word << 24) >> 24);
}

int fun2(unsigned word)
{

return ((int) word << 24) >> 24;
}
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Assume these are executed on a machine with a 32-bit word size that uses two’s-complement arithmetic.
Assume also that right shifts of signed values are performed arithmetically, while right shifts of unsigned
values are performed logically.

A. Fill in the following table showing the effect of these functions for several example arguments:

w fun1(w) fun2(w)
� � �
� � �
� � �
� � �

B. Describe in words the useful computation each of these functions performs.

2.2.6 Truncating Numbers

Suppose that rather than extending a value with extra bits, we reduce the number of bits representing a
number. This occurs, for example, in the code:

1 int x = 53191;
2 short sx = (short) x; /* -12345 */
3 int y = sx; /* -12345 */

On a typical 32-bit machine, when we cast x to be short, we truncate the 32-bit int to be a 16-bit
short int. As we saw before, this 16-bit pattern is the two’s-complement representation of � 12,345.
When we cast this back to int, sign extension will set the high-order 16 bits to 1s, yielding the 32-bit
two’s-complement representation of � 12,345.

When truncating a � -bit number ���� � � �	� � � � ��� � � � � ��� � � � to a
�

-bit number, we drop the high-order � � �

bits, giving a bit vector �� � � � � � � � � � � � � � � � � � � � � . Truncating a number can alter its value—a form of
overflow. We now investigate what numeric value will result. For an unsigned number � , the result of
truncating it to

�
bits is equivalent to computing ������� �

�
. This can be seen by applying the modulus

operation to Equation 2.1:

����� � � � � � � � ��� � � � � ��� � � � � ����� �
� �

� ��� ��
��� � � � �

�
	 ����� �
�

�
� � � ��
��� � � � �

� 	 ����� �
�

�
� � ��
��� � � � �

�

� ��� � � � � � � � � � � � � � � � � � � � �
In the above derivation we make use of the property that �

� ����� �
� � �

for any
� � �

, and that � � � ���� � � � � � �� � � ���� � �
� � �

�
� � � �

�
.



60 CHAPTER 2. REPRESENTING AND MANIPULATING INFORMATION

For a two’s-complement number � , a similar argument shows that
����� � � � � � � � �	� � � � � �
� � � � � ����� �

� ������ � � � � � � � � � � � � � �
� � � � � . That is, � ����� �
�

can be represented by an unsigned number having bit-level
representation

� � � � � � � � ��� � � � . In general, however, we treat the truncated number as being signed. This will
have numeric value

� ��� � � � ����� �
� � .

Summarizing, the effects of truncation are:

����� � � � � � � � � � � � � � � � � � � � � ��� � � � � � � � � �	� � � � � �
� � � � � ����� �
�

(2.7)����� � � � � � � � � � � � � � � � � �
� � � � ��� � � ����� � � � ��� � ���	� ��� � � ��� � � � � ����� �
�

� (2.8)

Practice Problem 2.22:

Suppose we truncate a four-bit value (represented by hex digits 0 through F) to a three-bit value (repre-
sented as hex digits 0 through 7). Fill in the table below showing the effect of this truncation for some
cases, in terms of the unsigned and two’s-complement interpretations of those bit patterns.

Hex Unsigned Two’s complement
Original Truncated Original Truncated Original Truncated

0 0
� �

3 3
� �

8 0 � � �

A 2
���

�
�

F 7
� �

�
�

Explain how Equations 2.7 and 2.8 apply to these cases.

2.2.7 Advice on Signed vs. Unsigned

As we have seen, the implicit casting of signed to unsigned leads to some nonintuitive behavior. Nonintuitive
features often lead to program bugs, and ones involving the nuances of implicit casting can be especially
difficult to see. Since the casting is invisible, we can often overlook its effects.

Practice Problem 2.23:

Consider the following code that attempts to sum the elements of an array a, where the number of
elements is given by parameter length:

1 /* WARNING: This is buggy code */
2 float sum_elements(float a[], unsigned length)
3 {
4 int i;
5 float result = 0;
6

7 for (i = 0; i <= length-1; i++)
8 result += a[i];
9 return result;

10 }
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When run with argumentlength equal to 0, this code should return
��� �

. Instead it encounters a memory
error. Explain why this happens. Show how this code can be corrected.

One way to avoid such bugs is to never use unsigned numbers. In fact, few languages other than C support
unsigned integers. Apparently these other language designers viewed them as more trouble than they are
worth. For example, Java supports only signed integers, and it requires that they be implemented with
two’s-complement arithmetic. The normal right shift operator >> is guaranteed to perform an arithmetic
shift. The special operator >>> is defined to perform a logical right shift.

Unsigned values are very useful when we want to think of words as just collections of bits with no nu-
meric interpretation. This occurs, for example, when packing a word with flags describing various Boolean
conditions. Addresses are naturally unsigned, so systems programmers find unsigned types to be helpful.
Unsigned values are also useful when implementing mathematical packages for modular arithmetic and for
multiprecision arithmetic, in which numbers are represented by arrays of words.

2.3 Integer Arithmetic

Many beginning programmers are surprised to find that adding two positive numbers can yield a negative
result, and that the comparison x < y can yield a different result than the comparison x-y < 0. These
properties are artifacts of the finite nature of computer arithmetic. Understanding the nuances of computer
arithmetic can help programmers write more reliable code.

2.3.1 Unsigned Addition

Consider two nonnegative integers � and � , such that
� � � � � � �

�
� �

. Each of these numbers can
be represented by � -bit unsigned numbers. If we compute their sum, however, we have a possible range� � � � � � �

� �
�
� � . Representing this sum could require � � �

bits. For example, Figure 2.14 shows a plot
of the function � � � when � and � have four-bit representations. The arguments (shown on the horizontal
axes) range from 0 to 15, but the sum ranges from 0 to 30. The shape of the function is a sloping plane. If
we were to maintain the sum as a � � �

bit number and add it to another value, we may require � � � bits,
and so on. This continued “word size inflation” means we cannot place any bound on the word size required
to fully represent the results of arithmetic operations. Some programming languages, such as Lisp, actually
support infinite precision arithmetic to allow arbitrary (within the memory limits of the machine, of course)
integer arithmetic. More commonly, programming languages support fixed-precision arithmetic, and hence
operations such as “addition” and “multiplication” differ from their counterpart operations over integers.

Unsigned arithmetic can be viewed as a form of modular arithmetic. Unsigned addition is equivalent to
computing the sum modulo �

�
. This value can be computed by simply discarding the high-order bit in the� � �

-bit representation of � � � . For example, consider a four-bit number representation with � � �
and � � � � , having bit representations

� � � � �
�
and

� ��� � � �
, respectively. Their sum is � � , having a 5-bit

representation
� � � � � �
�

. But if we discard the high-order bit, we get
� � � � �
�

, that is, decimal value
�
. This

matches the value � � ����� � 	 � �
.

In general, we can see that if � � � � �
�

, the leading bit in the � � �
-bit representation of the sum will equal
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Figure 2.14: Integer addition. With a four-bit word size, the sum could require 5 bits.

0

2w

2w+1
x + y

x +u y

Overflow

Figure 2.15: Relation between integer addition and unsigned addition. When � � � is greater than� � � �
, the sum overflows.
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Figure 2.16: Unsigned addition. With a four-bit word size, addition is performed modulo 16.

0, and hence discarding it will not change the numeric value. On the other hand, if �
� � � � � � �

� �
�
, the

leading bit in the � � �
-bit representation of the sum will equal 1, and hence discarding it is equivalent to

subtracting �
�

from the sum. These two cases are illustrated in Figure 2.15. This will give us a value in the
range

� � � � � � �
�

� �
� �

�
� �

� � �
�

, which is precisely the modulo �
�

sum of � and � . Let us define
the operation +u� for arguments � and � such that

� � � � � � �
�

as:

� +u� � �
� � � � � � � � � �

�
� � � � �

� � �
� � � � � � �

� �
� (2.9)

This is precisely the result we get in C when performing addition on two � -bit unsigned values.

An arithmetic operation is said to overflow when the full integer result cannot fit within the word size limits
of the data type. As Equation 2.9 indicates, overflow occurs when the two operands sum to �

�
or more.

Figure 2.16 shows a plot of the unsigned addition function for word size � � � . The sum is computed
modulo �

� � � 	
. When � � � � � 	

, there is no overflow, and � +u� � is simply � � � . This is shown as
the region forming a sloping plane labeled “Normal.” When � � � � � 	

, the addition overflows, having
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the effect of decrementing the sum by 16. This is shown as the region forming a sloping plane labeled
“Overflow.”

When executing C programs, overflows are not signalled as errors. At times, however, we might wish to
determine whether overflow has occurred. For example, suppose we compute �

�� � +u� � , and we wish to
determine whether � equals � � � . We claim that overflow has occurred if and only if � � � (or equivalently
� � � .) To see this, observe that � � � � � , and hence if � did not overflow, we will surely have � � � .
On the other hand, if � did overflow, we have � � � � � � �

�
. Given that � � �

�
, we have � � �

�
� �

,
and hence �#� � � � � �

�
� � . In our earlier example, we saw that

�
+u�

� � � �
. We can see that overflow

occurred, since
� � �

.

Modular addition forms a mathematical structure known as an Abelian group, named after the Danish math-
ematician Niels Henrik Abel (1802–1829). That is, it is commutative (that’s where the “Abelian” part
comes in) and associative. It has an identity element 0, and every element has an additive inverse. Let us
consider the set of � -bit unsigned numbers with addition operation +u� . For every value � , there must
be some value -u� � such that -u� � +u� � � �

. When � � �
, the additive inverse is clearly

�
. For��� �

, consider the value �
�
� � . Observe that this number is in the range

� � �
�
� � � �

�
, and

� � � �
�
� � � ����� �

� � �
� ����� �

� � �
. Hence it is the inverse of � under +u� . These two cases lead to

the following equation for
� � � � �

�
:

-u� � �
� � � � � �

�
�
� � � ��� � (2.10)

Practice Problem 2.24:

We can represent a bit pattern of length � �
�

with a single hex digit. For an unsigned interpretation of
these digits, use Equation 2.10 fill in the following table giving the values and the bit representations (in
hex) of the unsigned additive inverses of the digits shown.

� -u$ �
Hex Decimal Decimal Hex
0
3
8
A
F

2.3.2 Two’s-Complement Addition

A similar problem arises for two’s-complement addition. Given integer values � and � in the range � �
��� � �

� � � � �
�	� �

� �
, their sum is in the range � �

� � � � � � �
�
� � , potentially requiring � � �

bits to
represent exactly. As before, we avoid ever-expanding data sizes by truncating the representation to � bits.
The result is not as familiar mathematically as modular addition, however.

The � -bit two’s-complement sum of two numbers has the exact same bit-level representation as the un-
signed sum. In fact, most computers use the same machine instruction to perform either unsigned or signed



2.3. INTEGER ARITHMETIC 65

0

–2w –1

+2w
Positive overflow

Negative overflow
–2w

+2w –1

0

–2w –1

+2w –1

x + y
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Figure 2.17: Relation between integer and two’s-complement addition. When � � � is less than � � � � 0 ,
there is a negative overflow. When it is greater than � � � 0 � �

, there is a positive overflow.

addition. Thus, we can define two’s-complement addition for word size � , denoted as + t� on operands �
and � such that � �

�	� � � � � � � �
�	� �

as

� +t� �
�� � ��� � � � � � � � � � +u� � ��� � � � � � (2.11)

By Equation 2.3 we can write
� � � � � � � as ���	� � �

� � � , and
� ��� � � � � as � �	� � �

� � � . Using the property
that +u� is simply addition modulo �

�
, along with the properties of modular addition, we then have

� +t� � � � ��� � � � ��� � � � � +u� � � � � � � � �
� � ��� � � � � ���	� � � � � � � � � �	� � �

�
� � � ����� �

� �
� � ��� � � � � � � � ����� �

� �

The terms � ��� � �
�

and � ��� � �
�

drop out since they equal 0 modulo �
�

.

To better understand this quantity, let us define � as the integer sum �
�� � � � , �

�
as �

� ���� � ��� �
�

, and �
� �

as �
� � �� � ��� � � � � � . The value �

� �
is equal to � +t� � . We can divide the analysis into four cases as illustrated

in Figure 2.17:

1. � �
� � � � � �

��� �
. Then we will have �

� ��� � �
�

. This gives
� � � � � � �

�	� � � �
� � �

�	� �
.

Examining Equation 2.6, we see that �
�

is in the range such that �
� � ��� � . This case is referred to as

negative overflow. We have added two negative numbers � and � (that’s the only way we can have
� � � �

��� �
) and obtained a nonnegative result �

� � � � � � � �
�

.

2. � �
�	� � � � � �

. Then we will again have �
� ��� � �

�
, giving � �

��� � � �
� � �

��� � � � � � �
�

.
Examining Equation 2.6, we see that �

�
is in such a range that �

� � ��� � � �
�

, and therefore �
� � �

�
�
� �

� ��� � �
�
� �

� ��� . That is, our two’s-complement sum �
� �

equals the integer sum � � � .

3.
� � � � �

��� �
. Then we will have �

� ��� , giving
� � � � � �

��� �
, and hence �

� � ��� � ��� . Again, the
two’s-complement sum �

� �
equals the integer sum � � � .
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� � � � � � +t� � Case
� � � � � ��� �

1� � � � � � � � � ���
� � � � ���
�
� � � � � � 	 �

1� � � � � � � � � � � � � � � � � �
� � � � � � � 2� � � � � � � � � � �
� � ��� � �
�
� � � � 3� � � � � � � � � � �
� � � �����
�
� � � � � 	

4� � � � �
� � � � � �
� � � � � � �

Figure 2.18: two’s-complement addition examples. The bit-level representation of the four-bit two’s-
complement sum can be obtained by performing binary addition of the operands and truncating the result
to
�

bits.

4. �
��� � � � � �

�
. We will again have �

� � � , giving �
��� � � � � � �

�
. But in this range we have

�
� � ��� � � �

�
, giving �

� � � � � � � �
�

. This case is referred to as positive overflow. We have added
two positive numbers � and � (that’s the only way we can have � � �

��� �
) and obtained a negative

result �
� � � � � � � �

�
.

By the preceding analysis, we have shown that when operation + t� is applied to values � and � in the range
� �

��� � � � � � � �
��� �

� �
, we have

� +t� � �
���� � � � � �

� � �
�	� � � � � � Positive Overflow� � � � � �
��� � � � � � � �

��� �
Normal� � � � �

� � � � � � � �
��� �

Negative Overflow
(2.12)

As an illustration, Figure 2.18 shows some examples of four-bit two’s-complement addition. Each example
is labeled by the case to which it corresponds in the derivation of Equation 2.12. Note that �

� � � 	
, and

hence negative overflow yields a result 16 more than the integer sum, and positive overflow yields a result
16 less. We include bit-level representations of the operands and the result. Observe that the result can be
obtained by performing binary addition of the operands and truncating the result to four bits.

Figure 2.19 illustrates two’s-complement addition for word size � � � . The operands range between � �
and � . When � � � � � � , two’s-complement addition has a negative underflow, causing the sum to be
incremented by 16. When � � � � � � � � , the addition yields � � � . When � � � � � , the addition has
a positive overflow, causing the sum to be decremented by 16. Each of these three ranges forms a sloping
plane in the figure.

Equation 2.12 also lets us identify the cases where overflow has occurred. When both � and � are negative,
but � +t� � � �

, we have negative overflow. When both � and � are positive, but � + t� � � �
, we have

positive overflow.

Practice Problem 2.25:
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Figure 2.19: two’s-complement addition. With a four-bit word size, addition can have a negative overflow
when � � � �

� � and a positive overflow when � � � � � .
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Fill in the following table in the style of Figure 2.18. Give the integer values of the 5-bit arguments,
the values of both their integer and two’s-complement sums, the bit-level representation of the two’s-
complement sum, and the case from the derivation of Equation 2.12.

� � � � � � +t$ � Case

� ��������� � � ��������� �

� ��������� � � ��������� �

� ��������� � � ��������� �

� ��������� � � ��������� �

� ��������� � � ��������� �

2.3.3 Two’s-Complement Negation

We can see that every number � in the range � �
��� � � � � �

��� �
has an additive inverse under +t�

as follows. First, for � �� � �
��� �

, we can see that its additive inverse is simply � � . That is, we have
� �

��� �
� � � � �

��� �
and � � +t� ��� � � � ��� �

. For ��� � �
�	� � � �	����� � , on the other hand,

� � � �
��� �

cannot be represented as a � -bit number. We claim that this special value has itself as the
additive inverse under +t� . The value of � �

� �
�
+t� � �

� �
�

is given by the third case of Equation 2.12, since
� �

��� � � � �
�	� � � � �

�
. This gives � �

� �
�
+t� � �

� �
� � � �

� � �
� � �

. From this analysis we can
define the two’s-complement negation operation -t� for � in the range � �

� � � � � � �
��� �

as:

-t� � �
�
� �

��� � � � � � �
��� �

� � � ��� � �
��� � (2.13)

Practice Problem 2.26:

We can represent a bit pattern of length � �
�

with a single hex digit. For a two’s-complement in-
terpretation of these digits, fill in the following table to determine the additive inverses of the digits
shown.

� -t$ �
Hex Decimal Decimal Hex
0
3
8
A
F

What do you observe about the bit patterns generated by two’s-complement and unsigned (Problem 2.24)
negation?
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A well-known technique for performing two’s-complement negation at the bit level is to complement the
bits and then increment the result. In C, this can be written as ˜x + 1. To justify the correctness of this
technique, observe that for any single bit � � , we have ˜ � ��� � � � � . Let �� be a bit vector of length �
and � �� ����� � � �� � be the two’s-complement number it represents. By Equation 2.2, the complemented bit
vector ˜ �� has numeric value

����� � � ˜ �� � � � � � � � ��� � � �
�	� �

�

��� ��
��� � � � � � � � �

�

�
�
� �

��� �
�

�	� ��
��� � �

� 	
�

�
� ����� � �

��� �
�

��� ��
��� � � � �

� 	
� �

� �
�	� �

� �
��� �

� �
� � ����� � � �� �
� � � � �

The key simplification in the above derivation is that � ��� ���� � �
� � �

�	� �
� �

. It follows that by incrementing
˜ �� we obtain � � .

To increment a number � represented at the bit-level as ��
�� � � ��� � � � ��� � � � � ��� � � � , define the operation

���
���

as follows. Let
�

be the position of the rightmost zero, such that �� is of the form
� � ��� � � � ��� � � � � ��� � � �

� � � � � � � � � � �
�
.

We then define
���
��� � �� � to be

� � ��� ��� ���	� � � � � �
� � � �
� � � � � � � � �
� � �

. For the special case where the bit-level
representation of � is

� � � � � � � �
� �
�
, define

� �
��� � �� � to be

� � � � � �
� � �
. To show that

���
��� � �� � yields the bit-level

representation of � +t� �
, consider the following cases:

1. When �� � � � � � � � � � � �
�
, we have � � � � . The incremented value

� �
��� � �� �

�� � � � � � �
� � �
has numeric

value
�
.

2. When
� � � � �

, i.e., �� � � � � � � � � �
� �
�
, we have � � �	��

� � . The incremented value

� �
��� � �� � �� � � � � � � � � � �

has numeric value
�	����� � . From Equation 2.12, we can see that

�	��

� � +t� �
is one of

the positive overflow cases, yielding
�	����� � .

3. When
� � � � �

, i.e., ���� �	� 

� � and � �� � � , we can see that the low-order
� � �

bits of
� �
��� � �� �

has numeric value �
�
, while the low-order

� � �
bits of �� has numeric value � � � ���� � �

� � �
�
� �

. The
high-order � � � � �

bits have matching numeric values. Thus,
���

��� � �� � has numeric value � � �
. In

addition, for � �� �	� 
/� � , adding 1 to � will not cause an overflow, and hence � +t� �
has numeric

value � � �
as well.

As illustrations, Figure 2.20 shows how complementing and incrementing affect the numeric values of
several four-bit vectors.

2.3.4 Unsigned Multiplication

Integers � and � in the range
� � � � � � �

�
� �

can be represented as � -bit unsigned numbers, but their
product � � � can range between

�
and � �

�
� � � � � �

� �
� �

� �
�
� �

. This could require as many as � � bits
to represent. Instead, unsigned multiplication in C is defined to yield the � -bit value given by the low-order
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�� ˜ �� ���
��� � ˜ �� �� � � � �
� � � � � � � � � 	 � � � ���
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� � � � � � � � � �

Figure 2.20: Examples of complementing and incrementing four-bit numbers. The effect is to compute
the two’s value negation.

� bits of the � � -bit integer product. By Equation 2.7, this can be seen to be equivalent to computing the
product modulo �

�
. Thus, the effect of the � -bit unsigned multiplication operation *u� is:

� *u� � � � � � � � ����� �
�

(2.14)

It is well known that modular arithmetic forms a ring. We can therefore deduce that unsigned arithmetic
over � -bit numbers forms a ring

� � � � � � � � � � � ��� �
+u� � *u� � -u� � � � ��� .

2.3.5 Two’s-Complement Multiplication

Integers � and � in the range � �
��� � � � � � � �

��� �
� �

can be represented as � -bit two’s-complement
numbers, but their product � � � can range between � �

��� �
� � �

��� �
� � � � � �

� ��� � � �
�	� �

and � �
�	� �

�
� �

��� � � �
� �	� �

. This could require as many as � � bits to represent in two’s-complement form—most
cases would fit into � � � �

bits, but the special case of �
� ��� �

requires the full � � bits (to include a sign bit
of 0). Instead, signed multiplication in C generally is performed by truncating the � � -bit product to � bits.
By Equation 2.8, the effect of the � -bit two’s-complement multiplication operation * t� is

� *t� � � � ��� � � � � � � � ����� �
�
� (2.15)

We claim that the bit-level representation of the product operation is identical for both unsigned and two’s-
complement multiplication. That is, given bit vectors �� and �� of length � , the bit-level representation of the
unsigned product

����� � � �� � *u� ����� � � �� � is identical to the bit-level representation of the two’s-complement
product

����� � � �� � *t� ����� � � �� � . This implies that the machine can use a single type of multiply instruction
to multiply both signed and unsigned integers.

To see this, let ��� ����� � � �� � and � � ����� � � �� � be the two’s-complement values denoted by these bit
patterns, and let � � � ����� � � �� � and �

� � ����� � � �� � be the unsigned values. From Equation 2.3, we have� � � � � � ��� � �
�

, and �
� � � � � ��� � �

�
. Computing the product of these values modulo �

�
gives the

following:

� � � � �
� � ����� �

� � � � � � � �	� � �
�
� ��� � � � ��� � �

�
� � ����� �

�
(2.16)

� � � � � � � � ��� � � � � ��� � � � �
�
� � ��� � � ��� � �

� � � ����� �
�

(2.17)
� � � � � � ����� �

�
(2.18)
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Mode � � � � � Truncated � � �

Unsigned
� � � � �
� � � � ���
� � � � � � �������
� � � �����
�

Two’s Comp. � � � � � �
� � � � ���
� � � � ��� � �����
� � � � �����
�
Unsigned � � � � � � � � �����
� ��� � � ����� � � � � � � � � �
Two’s Comp. � � � � � � � � � � �����
� � � � � � � � � � � � � � � � �
Unsigned

� � � ���
� � � � ���
� � � � � � � � �
� � � � � �
�
Two’s Comp.

� � � ���
� � � � ���
� � � � � � � � �
� � � � � �
�

Figure 2.21: Three-bit unsigned and two’s-complement multiplication examples. Although the bit-level
representations of the full products may differ, those of the truncated products are identical.

Thus, the low-order � bits of � � � and � � � �
�
are identical.

As illustrations, Figure 2.21 shows the results of multiplying different three-bit numbers. For each pair of
bit-level operands, we perform both unsigned and two’s-complement multiplication. Note that the unsigned
truncated product always equals � � ������� � , and that the bit-level representations of both truncated products
are identical.

Practice Problem 2.27:

Fill in the following table showing the results of multiplying different three-bit numbers, in the style of
Figure 2.21:

Mode � � �
�

� Truncated � �

�

Unsigned � ����� � � ����� �
Two’s Comp. � ����� � � ����� �
Unsigned � ����� � � �������
Two’s Comp. � ����� � � �������
Unsigned � ����� � � �������
Two’s Comp. � ����� � � �������

We can see that unsigned arithmetic and two’s-complement arithmetic over � -bit numbers are isomorphic—
the operations +u� , -u� , and *u� have the exact same effect at the bit level as do +t� , -t� , and *t� . From this,
we can deduce that two’s-complement arithmetic forms a ring

� �
� �

��� � � � � ��� � ���
�
� ��� �

+t� � *t� � -t� � � � ��� .
2.3.6 Multiplying by Powers of Two

On most machines, the integer multiply instruction is fairly slow, requiring 12 or more clock cycles, whereas
other integer operations—such as addition, subtraction, bit-level operations, and shifting—require only one
clock cycle. As a consequence, one important optimization used by compilers is to attempt to replace
multiplications by constant factors with combinations of shift and addition operations.

Let � be the unsigned integer represented by bit pattern
� � ��� � � � ��� � � � � � � � � � . Then for any

� � �
, we

claim the bit-level representation of � � �
is given by

� � ��� � � � ��� � � � � ��� � � � � � � � �
� � � , where
�

0s have been
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added to the right. This property can be derived using Equation 2.1:

��� � � � � � � � �	� � � � �	� � � � � � � � � � � � � � �
� � � � �
�	� ��
��� � � � �

� � �

�
� ��� ��
��� � � � �

� 	
� �

�

� � �
�

For
� � � , we can truncate the shifted bit vector to be of length � , giving

� � ��� � � � � � ��� � � � � � � ��� � � � � � � � � � � � .
By Equation 2.7, this bit-vector has numeric value � � � ����� �

� � � *u� �
�
. Thus, for unsigned variable

x, the C expression x << k is equivalent to x * pwr2k, where pwr2k equals � k. In particular, we can
compute pwr2k as 1U << k.

By similar reasoning, we can show that for a two’s-complement number � having bit pattern
� � ��� ��� ����� � � � � �
� � �
� ,

and any
�

in the range
� � � � � , bit pattern

� � �	� � � � � � � ��� � � � � � � � � � � � will be the two’s-complement
representation of � *t� �

�
. Therefore, for signed variable x , the C expression x << k is equivalent to

x * pwr2k, where pwr2k equals � k.

Note that multiplying by a power of 2 can cause overflow with either unsigned or two’s-complement arith-
metic. Our result shows that even then we will get the same effect by shifting.

Practice Problem 2.28:

As we will see in Chapter 3, the leal instruction on an Intel-compatible processor can perform com-
putations of the form a<<k + b, where k is either 0, 1, or 2, and b is either 0 or some program value.
The compiler often uses this instruction to perform multiplications by constant factors. For example, we
can compute 3*a as a<<1 + a.

What multiples of a can be computed with this instruction?

2.3.7 Dividing by Powers of Two

Integer division on most machines is even slower than integer multiplication—requiring 30 or more clock
cycles. Dividing by a power of 2 can also be performed using shift operations, but we use a right shift
rather than a left shift. The two different shifts—logical and arithmetic—serve this purpose for unsigned
and two’s-complement numbers, respectively.

Integer division always rounds toward zero. For � � �
and � � �

, the result should be
� � � ��� , where for any

real number � , � ��� is defined to be the unique integer � � such that � � � � � � � � �
. As examples

� ��� � � ��� �
,�

� ��� � � �"� � � , and
� � � � �

.

Consider the effect of performing a logical right shift on an unsigned number. Let � be the unsigned
integer represented by bit pattern

� � ��� � � � ��� � � � � ��� � � � , and
�

be in the range
� � � � � . Let � � be the

unsigned number with � � �
-bit representation

� � �	� ��� ���	� � � � � ��� � � � , and � � � be the unsigned number with
�

-bit representation
� � � � � � � � � � � � � . We claim that � � � � � � � � � . To see this, by Equation 2.1, we have
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��� � �	� ���� � � � �
�
, � � � � �	� � � ���� � � � �

� � �
and � � � � � � � ���� � � � � � . We can therefore write � as ��� �

� � � � � � � .
Observe that

� � � � � � � � � ���� � �
� � �

�
� �

, and hence
� � � � � � �

�
, implying that

� � � � � � � � � �
. Therefore,� � � � � � � � � � � � � � � � � �!� � � � � � � � � � � �#� � � .

Observe that performing a logical right shift of bit vector
� �	��� ��� ���	� � � � � �
� � � � by

�
yields the bit vector

� � � � � � � � � � ��� � � � ��� � � � � � � � � � �

This bit vector has numeric value � � . That is, logically right shifting an unsigned number by
�

is equiv-
alent to dividing it by �

�
. Therefore, for unsigned variable x, the C expression x >> k is equivalent to

x / pwr2k, where pwr2k equals � k.

Now consider the effect of performing an arithmetic right shift on a two’s-complement number. Let �
be the two’s-complement integer represented by bit pattern

� � �	� � � � ��� � � � � ��� � � � , and
�

be in the range��� � � � . Let � � be the two’s-complement number represented by the � � �
bits

� �	�	� ��� ����� � � � � ��� � � � ,
and � � � be the unsigned number represented by the low-order

�
bits

� � � � � � � � ��� � � � . By a similar analysis as
the unsigned case, we have � � �

� � � � � � � , and
� � � � � � �

�
, giving � � � � � � � � � . Furthermore, observe

that shifting bit vector
� � �	� � � � �	� � � � � ��� � � � right arithmetically by

�
yields the bit vector

� � �	� � � � � � � � �	� � � � �	� � � � �	� � � � � � � � � � �

which is the sign extension from � � �
bits to � bits of

� � �	� � � � �	� � � � � � � � � � . Thus, this shifted bit vector
is the two’s-complement representation of

� � � � � .

For � � �
, our analysis shows that this shifted result is the desired value. For � � �

and � � �
, however,

the result of integer division should be
� � � ��� , where for any real number � , � ��� is defined to be the unique

integer � � such that � � � � � � � � � . That is, integer division should round negative results upward toward
zero. For example, the C expression -5/2 yields -2. Thus, right shifting a negative number by

�
is

not equivalent to dividing it by �
�

when rounding occurs. For example, the four-bit representation of �
�

is� � � ���
�
. If we shift it right by one arithmetically we get

� ��� � �
�
, which is the two’s-complement representation

of �
�
.

We can correct for this improper rounding by “biasing” the value before shifting. This technique exploits
the property that

� � � ��� � � � � � � � � � � ��� for integers � and � such that � � �
. Thus, for � � �

, if we first
add �

�
� �

to � before right shifting, we will get a correctly rounded result. This analysis shows that for
a two’s-complement machine using arithmetic right shifts, the C expression (x<0 ? (x + (1<<k)-
1) : x) >> k is equivalent to x/pwr2k, where pwr2k equals � k. For example, to divide �

�
by � ,

we first add bias � � � � �
giving bit pattern

� ��� � � �
. Right shifting this by one arithmetically gives bit

pattern
� ����� � �

, which is the two’s-complement representation of � � .

Practice Problem 2.29:

In the following code, we have omitted the definitions of constants M and N:

#define M /* Mystery number 1 */
#define N /* Mystery number 2 */
int arith(int x, int y)
{

int result = 0;
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result = x*M + y/N; /* M and N are mystery numbers. */
return result;

}

We compiled this code for particular values of M and N. The compiler optimized the multiplication and
division using the methods we have discussed. The following is a translation of the generated machine
code back into C:

/* Translation of assembly code for arith */
int optarith(int x, int y)
{

int t = x;
x <<= 4;
x -= t;
if (y < 0) y += 3;
y >>= 2; /* Arithmetic shift */
return x+y;

}

What are the values of M and N?

Practice Problem 2.30:

Assume we are running code on a 32-bit machine using two’s-complement arithmetic for signed val-
ues. Right shifts are performed arithmetically for signed values and logically for unsigned values. The
variables are declared and initialized as follows:

int x = foo(); /* Arbitrary value */
int y = bar(); /* Arbitrary value */

unsigned ux = x;
unsigned uy = y;

For each of the following C expressions, either (1) argue that it is true (evaluates to 1) for all values of x
and y or (2) give example values of x and y for which it is false (evaluates to 0):

A. (x >= 0) || ((2*x) < 0)

B. (x & 7) != 7 || (x<<30 < 0)

C. (x * x) >= 0

D. x < 0 || -x <= 0

E. x > 0 || -x >= 0

F. x*y == ux*uy

G. ˜x*y + uy*ux == -y
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2.4 Floating Point

Floating-point representation encodes rational numbers of the form � � � � � � . It is useful for performing
computations involving very large numbers ( � � ��� �

), numbers very close to 0 ( � � ��� �
), and more

generally as an approximation to real arithmetic.

Up until the 1980s, every computer manufacturer devised its own conventions for how floating-point num-
bers were represented and the details of the operations performed on them. In addition, they often did not
worry too much about the accuracy of the operations, viewing speed and ease of implementation as being
more critical than numerical precision.

All of this changed around 1985 with the advent of IEEE Standard 754, a carefully crafted standard for
representing floating-point numbers and the operations performed on them. This effort started in 1976
under Intel’s sponsorship with the design of the 8087, a chip that provided floating-point support for the
8086 processor. They hired William Kahan, a professor at the University of California, Berkeley, as a
consultant to help design a floating-point standard for its future processors. They allowed Kahan to join
forces with a committee generating an industry-wide standard under the auspices of the Institute of Electrical
and Electronics Engineers (IEEE). The committee ultimately adopted a standard close to the one Kahan had
devised for Intel. Nowadays virtually all computers support what has become known as IEEE floating point.
This has greatly improved the portability of scientific application programs across different machines.

Aside: The IEEE.
The Institute of Electrical and Electronic Engineers (IEEE—pronounced “I-Triple-E”) is a professional society that
encompasses all of electronic and computer technology. It publishes journals, sponsors conferences, and sets up
committees to define standards on topics ranging from power transmission to software engineering. End Aside.

In this section, we will see how numbers are represented in the IEEE floating-point format. We will also
explore issues of rounding, when a number cannot be represented exactly in the format and hence must be
adjusted upward or downward. We will then explore the mathematical properties of addition, multiplication,
and relational operators. Many programmers consider floating point to be at best uninteresting and at worst
arcane and incomprehensible. We will see that since the IEEE format is based on a small and consistent set
of principles, it is really quite elegant and understandable.

2.4.1 Fractional Binary Numbers

A first step in understanding floating-point numbers is to consider binary numbers having fractional values.
Let us first examine the more familiar decimal notation. Decimal notation uses a representation of the
form: �����	� � � � � �
� � � ��� � � � � � � � � ��� � � , where each decimal digit � � ranges between 0 and 9. This notation
represents a value � defined as

� �
��
��� � �

� � �
��� �

The weighting of the digits is defined relative to the decimal point symbol ‘
�
’ meaning that digits to the

left are weighted by positive powers of 10, giving integral values, while digits to the right are weighted by
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negative powers of 10, giving fractional values. For example,
� � � � � ��� represents the number

�
�
� � � � � �� � � � �

�
� � � � � � � � � � � � � �

� ���� � .

By analogy, consider a notation of the form
� � � � � � � � � � � � � � � � � � � � � � � � � � , where each binary digit, or bit,� � ranges between 0 and 1. This notation represents a number

�
defined as

� �
��
��� � � �

�
�
� � (2.19)

The symbol ‘
�
’ now becomes a binary point, with bits on the left being weighted by positive powers of

two, and those on the right being weighted by negative powers of two. For example,
� � ��� ��� � represents the

number
�
� �

� � �
� �

�
� �

� �
�
� �

� �
� � � �

� �
� � � � � � � � � �

� �
�

�
� � �

� ,

One can readily see from Equation 2.19 that shifting the binary point one position to the left has the effect of
dividing the number by two. For example, while

� � ��� ��� � represents the number
� �

� ,
� � � ����� � represents the

number � � � � �
� �

�
�
�

�
� � �

�� . Similarly, shifting the binary point one position to the right has the effect
of multiplying the number by two. For example,

� � ����� � � represents the number � � � � � � � � �
� � ��� �� .

Note that numbers of the form
� � ��� � � � � � represent numbers just below

�
. For example,

� � ����������� � repre-
sents

	
�	
� . We will use the shorthand notation

����� � � to represent such values.

Assuming we consider only finite-length encodings, decimal notation cannot represent numbers such as
�

�

and
� � exactly. Similarly, fractional binary notation can only represent numbers that can be written � � � � .

Other values can only be approximated. For example, although the number
�
� can be approximated with

increasing accuracy by lengthening the binary representation, we cannot represent it exactly as a fractional
binary number:

Representation Value Decimal� ��� � � � ��� ���
� ��� � � �

�
� � � � ���� ��� � � � �� � � � � ���� ��� � ��� � ���	 � � � � � � ���� ��� � ��� � � 	

� � � � � � � � ���� ��� � ��� � � � �
�	
�

� � � � � � � � ���� ��� � ��� � � � � � 	� � � � � � � � � � � ���� ��� � ��� � � ��� � �
�

��� 	 � � ����� � � � � � ���

Practice Problem 2.31:

Fill in the missing information in the following table:
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Fractional value Binary representation Decimal representation0$ � � ��� ��� � �.�
� .0��

����� �������
� � �����

� � � � �
��� � � � �

Practice Problem 2.32:

The imprecision of floating-point arithmetic can have disastrous effects. On February 25, 1991, during
the Gulf War, an American Patriot Missile battery in Dharan, Saudi Arabia, failed to intercept an incom-
ing Iraqi Scud missile. The Scud struck an American Army barracks and killed 28 soldiers. The U. S.
General Accounting Office (GAO) conducted a detailed analysis of the failure [53] and determined that
the underlying cause was an imprecision in a numeric calculation. In this exercise, you will reproduce
part of the GAO’s analysis.

The Patriot system contains an internal clock, implemented as a counter that is incremented every 0.1
seconds. To determine the time in seconds, the program would multiply the value of this counter by a
24-bit quantity that was a fractional binary approximation to 00�� . In particular, the binary representation
of 00�� is the nonterminating sequence

� � ����������������� � �����	� �
� � � �

where the portion in brackets is repeated indefinitely. The computer approximated
� � �

using just the
leading bit plus the first 23 bits of this sequence to the right of the binary point. Let us call this number� .

A. What is the binary representation of � � � � �
?

B. What is the approximate decimal value of � � � � �
?

C. The clock starts at 0 when the system is first powered up and keeps counting up from there. In
this case, the system had been running for around 100 hours. What was the difference between the
time computed by the software and the actual time?

D. The system predicts where an incoming missile will appear based on its velocity and the time of
the last radar detection. Given that a Scud travels at around 2,000 meters per second, how far off
was its prediction?

Normally, a slight error in the absolute time reported by a clock reading would not affect a tracking
computation. Instead, it should depend on the relative time between two successive readings. The
problem was that the Patriot software had been upgraded to use a more accurate function for reading
time, but not all of the function calls had been replaced by the new code. As a result, the tracking
software used the accurate time for one reading and the inaccurate time for the other [73].
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2.4.2 IEEE Floating-Point Representation

Positional notation such as considered in the previous section would not be efficient for representing very
large numbers. For example, the representation of

�
� �

��� �
would consist of the bit pattern

� � �
followed by

100 zeros. Instead, we would like to represent numbers in a form � � � � by giving the values of � and � .

The IEEE floating-point standard represents a number in a form � � � � � � � � � � ��� :

� The sign � determines whether the number is negative ( � � �
) or positive ( �!� �

), where the interpre-
tation of the sign bit for numeric value 0 is handled as a special case.

� The significand
�

is a fractional binary number that ranges either between
�

and � � � or between
�

and
� � � .

� The exponent � weights the value by a (possibly negative) power of 2.

The bit representation of a floating-point number is divided into three fields to encode these values:

� The single sign bit s directly encodes the sign � .

� The
�

-bit exponent field exp ��� � � � � � � � � � � encodes the exponent � .

� The � -bit fraction field frac ��� � � � � � � � � � � encodes the significand
�

, but the value encoded also
depends on whether or not the exponent field equals 0.

In the single-precision floating-point format (a float in C), fields s, exp, and frac are 1,
� � � , and

� � � � bits each, yielding a 32-bit representation. In the double-precision floating-point format (a double
in C), fields s, exp, and frac are 1,

� � ���
, and � � � � bits each, yielding a 64-bit representation.

The value encoded by a given bit representation can be divided into three different cases, depending on the
value of exp.

Normalized Values

This is the most common case. These kinds occur when the bit pattern of exp is neither all 0s (numeric
value 0) nor all 1s (numeric value 255 for single precision, 2047 for double). In this case, the exponent field
is interpreted as representing a signed integer in biased form. That is, the exponent value is � ��� � ��� 

	
where � is the unsigned number having bit representation � � � � � � � � � � � , and

��� 

	
is a bias value equal to

�
� � �

� �
(127 for single precision and 1023 for double). This yields exponent ranges from � � � 	 to

� � � �
for single precision and �

� � ��� to
� � � � � for double precision.

The fraction field frac is interpreted as representing the fractional value � , where
� � � � �

, having
binary representation

� � � � � � � � � � � � � , that is, with the binary point to the left of the most significant bit.
The significand is defined to be

� � � � � . This is sometimes called an implied leading 1 representation,
because we can view

�
to be the number with binary representation

��� � � � � � � � � � � � � � . This representation
is a trick for getting an additional bit of precision for free, since we can always adjust the exponent � so
that significand

�
is in the range

�"� � � � (assuming there is no overflow). We therefore do not need to
explicitly represent the leading bit, since it always equals 1.
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Denormalized Values

When the exponent field is all 0s, the represented number is in denormalized form. In this case, the exponent
value is � � � � ��� 
�	 , and the significand value is

� � � , that is, the value of the fraction field without
an implied leading 1.

Aside: Why set the bias this way for denormalized values?
Having the exponent value be

�9� � �����
rather than simply

� � �����
might seem counterintuitive. We will see shortly

that it provides for smooth transition from denormalized to normalized values.End Aside.

Denormalized numbers serve two purposes. First, they provide a way to represent numeric value 0, since
with a normalized number we must always have

� � �
, and hence we cannot represent 0. In fact the

floating-point representation of
� � ���

has a bit pattern of all 0s: the sign bit is 0, the exponent field is all
0s (indicating a denormalized value), and the fraction field is all 0s, giving

� � � � �
. Curiously, when

the sign bit is 1, but the other fields are all 0s, we get the value �
� ���

. With IEEE floating-point format, the
values �

� ���
and

� � ���
are considered different in some ways and the same in others.

A second function of denormalized numbers is to represent numbers that are very close to 0.0. They provide
a property known as gradual underflow in which possible numeric values are spaced evenly near 0.0.

Special Values

A final category of values occurs when the exponent field is all 1s. When the fraction field is all 0s, the
resulting values represent infinity, either

���
when �	� �

, or �
�

when �	� �
. Infinity can represent

results that overflow, as when we multiply two very large numbers, or when we divide by zero. When the
fraction field is nonzero, the resulting value is called a “ � 
 � ,” short for “Not a Number.” Such values are
returned as the result of an operation where the result cannot be given as a real number or as infinity, as when
computing � � � or

� � � . They can also be useful in some applications for representing uninitialized data.

2.4.3 Example Numbers

Figure 2.22 shows the set of values that can be represented in a hypothetical 6-bit format having
� � �

exponent bits and � � � significand bits. The bias is �
� � �

� � � �
. Part A of the figure shows all

representable values (other than � 
 � ). The two infinities are at the extreme ends. The normalized numbers
with maximum magnitude are �

� � . The denormalized numbers are clustered around 0. These can be seen
more clearly in part B of the figure, where we show just the numbers between �

�����
and

� �����
. The two

zeros are special cases of denormalized numbers. Observe that the representable numbers are not uniformly
distributed—they are denser nearer the origin.

Figure 2.23 shows some examples for a hypothetical eight-bit floating-point format having
� � � exponent

bits and � � �
fraction bits. The bias is �

� � �
� � � � . The figure is divided into three regions representing

the three classes of numbers. Closest to 0 are the denormalized numbers, starting with 0 itself. Denormalized
numbers in this format have � � � � � � � 	

, giving a weight � � � �	
� . The fractions � range over the

values
� � �� � � � � � �� , giving numbers � in the range

�
to

���� 	 �
� �

�
� � .
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A. Complete range

�∞ �10 �5 0 +5 +10 +∞

Denormalized Normalized Infinity

�∞ �10 �5 0 +5 +10 +∞

Denormalized Normalized Infinity

B. Values between �
�����

and
� �����

.

�1 �0.8 �0.6 �0.4 �0.2 0 +0.2 +0.4 +0.6 +0.8 +1

Denormalized Normalized Infinity

+0�0

�1 �0.8 �0.6 �0.4 �0.2 0 +0.2 +0.4 +0.6 +0.8 +1

Denormalized Normalized Infinity

+0�0

Figure 2.22: Representable values for six-bit floating-point format. There are
�
�
�

exponent bits and� � � significand bits. The bias is 3.

Description Bit representation � � � � �
Zero 0 0000 000

� � 	 � � �
Smallest pos. 0 0000 001

� � 	 �
�

�
�

�
�
� �

0 0000 010
� � 	 �� �� �

�
� �

0 0000 011
� � 	 �� �� �

�
� �

� � �
0 0000 110

� � 	 	
�

	
�

	
�
� �

Largest denorm. 0 0000 111
� � 	 �� �� �

�
� �

Smallest norm. 0 0001 000
� � 	 � �� �

�
� �

0 0001 001
� � 	 �

� 	� 	
�
� �

� � �
0 0110 110

	 � �
	
�

�
��

�
���	

0 0110 111
	 � � ��

�
��

�
���	

One 0 0111 000 � � � �� �
0 0111 001 � � �

� 	� 	�
0 0111 010 � � ��

���
�

���
�

� � �
0 1110 110

� � �
	
�

�
�� ��� �

Largest norm. 0 1110 111
� � �

��
�
�� � � �

Infinity 0 1111 000 – – – –
� �

Figure 2.23: Example nonnegative values for eight-bit floating-point format. There are
�
�
�

exponent
bits and � � �

significand bits. The bias is
�
.
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The smallest normalized numbers in this format also have � � � � � � � 	
, and the fractions also range

over the values
� � �� � � � � �� . However, the significands then range from

� � � � �
to

� � �� � �
�� , giving

numbers � in the range
�
�
� � to

�
�

�
� � .

Observe the smooth transition between the largest denormalized number
�

�
� � and the smallest normalized

number
�
�
� � . This smoothness is due to our definition of � for denormalized values. By making it

� � ��� 

	
rather than �

��� 

	
, we compensate for the fact that the significand of a denormalized number does not have

an implied leading 1.

As we increase the exponent, we get successively larger normalized values, passing through 1.0 and then to
the largest normalized number. This number has exponent � � � , giving a weight � � � � ��� . The fraction
equals

�� giving a significand
� � �

�� . Thus, the numeric value is � � � � � . Going beyond this overflows
to
� �

.

One interesting property of this representation is that if we interpret the bit representations of the values in
Figure 2.23 as unsigned integers, they occur in ascending order, as do the values they represent as floating-
point numbers. This is no accident—the IEEE format was designed so that floating-point numbers could
be sorted using an integer-sorting routine. A minor difficulty occurs when dealing with negative numbers,
since they have a leading 1, and they occur in descending order, but this can be overcome without requiring
floating-point operations to perform comparisons (see Problem 2.56).

Practice Problem 2.33:

Consider a five-bit floating-point representation based on the IEEE floating-point format, with one sign
bit, two exponent bits (

�
� � ), and two fraction bits ( � � � ). The exponent bias is � � � 0 � �

�
�
.

The table that follows enumerates the entire nonnegative range for this five-bit floating-point represen-
tation. Fill in the blank table entries using the following directions:

� : The value represented by considering the exponent field to be an unsigned integer.
�

: The value of the exponent after biasing.
�

: The value of the fraction.
�

: The value of the significand.
�

: The numeric value represented.

Express the values of
�

,
�

and
�

as fractions of the form � $ . You need not fill in entries marked “—”.
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Description exp frac Single precision Double precision
Value Decimal Value Decimal

Zero
� � � � � � � � � � � � � � � ��� � � ���

Smallest denorm.
� � � � � � � � � � � � � �

� � �

� �
� � � 	 ��� � � � � � � �

�
� � �

� �
� ��� � � � � � � � � � � � �

Largest denorm.
� � � � � � � � � � � ��� � � � � � � �

� � � 	 ��� � � � � � � � � � � � � � �
� ��� � �

� � � � � � � �
� �

Smallest norm.
� � � � � � � � � � � � � �

� �
� � � 	 ��� � � � � � � � �

� �
� ��� � �

� � � � � � � �
� �

One
� � � � � ��� � � � � � � �

� �
� ����� �

� �
� �����

Largest norm.
��� � � � � � � � � � ��� � � � � � � �

� � � ��� � � � � � � � � � � � � �
��� � � ��� � � � � �

� �

Figure 2.24: Examples of nonnegative floating-point numbers.

Bits � � � � �

0 00 00

0 00 01

0 00 10

0 00 11

0 01 00

0 01 01

0 01 10

0 01 11

0 10 00 � � �$ $ $ �$
0 10 01

0 10 10

0 10 11

0 11 00 — — — —
� �

0 11 01 — — — —
�����

0 11 10 — — — —
�����

0 11 11 — — — —
�����

Figure 2.24 shows the representations and numeric values of some important single and double-precision
floating-point numbers. As with the eight-bit format shown in Figure 2.23 we can see some general proper-
ties for a floating-point representation with a

�
-bit exponent and an � -bit fraction:

� The value
� � ���

always has a bit representation of all
�
s.

� The smallest positive denormalized value has a bit representation consisting of a 1 in the least signif-
icant bit position and otherwise all 0s. It has a fraction (and significand) value

� � � � �
� �

and an
exponent value � � � � � � � � � . The numeric value is therefore � � �

� � � ��� ��� � �
.

� The largest denormalized value has a bit representation consisting of an exponent field of all 0s and
a fraction field of all 1s. It has a fraction (and significand) value

� � � � � � �
� �

(which we
have written

� � � ) and an exponent value � � � �
� � � � � . The numeric value is therefore � �

� � � �
� � � � �

� ��� ��� � �
, which is just slightly smaller than the smallest normalized value.
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� The smallest positive normalized value has a bit representation with a 1 in the least significant bit
of the exponent field and otherwise all 0s. It has a significand value

� � �
and an exponent value

� � � � � � � � � . The numeric value is therefore � � �
� � � ��� � �

.

� The value
�����

has a bit representation with all but the most significant bit of the exponent field equal
to 1 and all other bits equal to 0. Its significand value is

� � �
and its exponent value is � � �

.

� The largest normalized value has a bit representation with a sign bit of 0, the least significant bit of
the exponent equal to 0, and all other bits equal to 1. It has a fraction value of � � � � �

� �
, giving

a significand
� � � � �

� �
(which we have written � � � ). It has an exponent value � � �

� � �
� �

,
giving a numeric value � � � � � �

� � � � �
��� ��� � � � � � � �

� � � � � � �
��� �
�

.

One useful exercise for understanding floating-point representations is to convert sample integer values into
floating-point form. For example, we saw in Figure 2.10 that 12,345 has binary representation

� ��� � � � � � � ����� � � �
�
.

We create a normalized representation of this by shifting 13 positions to the right of a binary point, giv-
ing

� � � � � � ��� � � � � � � � ����� � � � � � �
�

�

. To encode this in IEEE single precision format, we construct
the fraction field by dropping the leading 1 and adding 10 0s to the end, giving binary representation� � � � � � � � ����� � � � ��� ��� � ��� ��� � �

. To construct the exponent field, we add bias 127 to 13, giving 140, which has
binary representation

� � � � � ��� � � �
. We combine this with a sign bit of 0 to get the floating-point represen-

tation in binary of
� � � � � � ��� � � � � � � ��� � ����� � � � ��� ��� ��� � ��� � �

. Recall from Section 2.1.4 that we observed
the following correlation in the bit-level representations of the integer value 12345 (0x3039) and the
single-precision floating-point value 12345.0 (0x4640E400):

0 0 0 0 3 0 3 9
00000000000000000011000000111001

*************
4 6 4 0 E 4 0 0

01000110010000001110010000000000

We can now see that the region of correlation corresponds to the low-order bits of the integer, stopping just
before the most significant bit equal to 1 (this bit forms the implied leading 1), matching the high-order bits
in the fraction part of the floating-point representation.

Practice Problem 2.34:

As mentioned in Practice problem 2.6, the integer
� � � ��� � �

has hexadecimal representation 0x354321,
while the single-precision, floating-point number

� � � � � � � � �
has hexadecimal representation0x4A550C84.

Derive this floating-point representation and explain the correlation between the bits of the integer and
floating-point representations.

Practice Problem 2.35:

A. For a floating-point format with a
�

-bit exponent and an � -bit fraction, give a formula for the
smallest positive integer that cannot be represented exactly (because it would require an � � �

-bit
fraction to be exact).

B. What is the numeric value of this integer for single-precision format (
�
� � , � � � � )?
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Mode $1.40 $1.60 $1.50 $2.50 $–1.50
Round-to-even $1 $2 $2 $2 $–2
Round-toward-zero $1 $1 $1 $2 $–1
Round-down $1 $1 $1 $2 $–2
Round-up $2 $2 $2 $3 $–1

Figure 2.25: Illustration of rounding modes for dollar rounding. The first rounds to a nearest value,
while the other three bound the result above or below.

2.4.4 Rounding

Floating-point arithmetic can only approximate real arithmetic, since the representation has limited range
and precision. Thus, for a value � , we generally want a systematic method of finding the “closest” matching
value � � that can be represented in the desired floating-point format. This is the task of the rounding opera-
tion. The key problem is to define the direction to round a value that is halfway between two possibilities.
For example, if I have $1.50 and want to round it to the nearest dollar, should the result be $1 or $2? An
alternative approach is to maintain a lower and an upper bound on the actual number. For example, we
could determine representable values � � and � �

such that the value � is guaranteed to lie between them:� � � � � � �

. The IEEE floating-point format defines four different rounding modes. The default method
finds a closest match, while the other three can be used for computing upper and lower bounds.

Figure 2.25 illustrates the four rounding modes applied to the problem of rounding a monetary amount to
the nearest whole dollar. Round-to-even (also called round-to-nearest) is the default mode. It attempts to
find a closest match. Thus, it rounds $1.40 to $1 and $1.60 to $2, since these are the closest whole dollar
values. The only design decision is to determine the effect of rounding values that are halfway between
two possible results. Round-to-even mode adopts the convention that it rounds the number either upward or
downward such that the least significant digit of the result is even. Thus, it rounds both $1.50 and $2.50 to
$2.

The other three modes produce guaranteed bounds on the actual value. These can be useful in some nu-
merical applications. Round-toward-zero mode rounds positive numbers downward and negative numbers
upward, giving a value

�� such that � �� � � � � � . Round-down mode rounds both positive and negative numbers
downward, giving a value �

�
such that �

� � � . Round-up mode rounds both positive and negative numbers
upward, giving a value � �

such that � � � �

.

Round-to-even at first seems like it has a rather arbitrary goal—why is there any reason to prefer even
numbers? Why not consistently round values halfway between two representable values upward? The
problem with such a convention is that one can easily imagine scenarios in which rounding a set of data
values would then introduce a statistical bias into the computation of an average of the values. The average
of a set of numbers that we rounded by this means would be slightly higher than the average of the numbers
themselves. Conversely, if we always rounded numbers halfway between downward, the average of a set
of rounded numbers would be slightly lower than the average of the numbers themselves. Rounding toward
even numbers avoids this statistical bias in most real-life situations. It will round upward about 50% of the
time and round downward about 50% of the time.

Round-to-even rounding can be applied even when we are not rounding to a whole number. We simply
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consider whether the least significant digit is even or odd. For example, suppose we want to round decimal
numbers to the nearest hundredth. We would round 1.2349999 to 1.23 and 1.2350001 to 1.24, regardless of
rounding mode, since they are not halfway between 1.23 and 1.24. On the other hand, we would round both
1.2350000 and 1.2450000 to 1.24, since four is even.

Similarly, round-to-even rounding can be applied to binary fractional numbers. We consider least significant
bit value 0 to be even and 1 to be odd. In general, the rounding mode is only significant when we have a
bit pattern of the form

��� � � � � ����� � � � � � � � � � � , where
�

and
�

denote arbitary bit values with the
rightmost

�
being the position to which we wish to round. Only bit patterns of this form denote values

that are halfway between two possible results. As examples, consider the problem of rounding values to
the nearest quarter (i.e., 2 bits to the right of the binary point). We would round

� � ��� � � ��� � ( �
�

� � ) down
to

� � ��� � � ( � ), and
� � ��� � ��� � � ( �

���	 ) up to
� � ��� � � ( �

�
� ), because these values are not halfway between two

possible values. We would round
� � � ����� � � � ( �

�� ) up to
������� � � (

�
) and

� � � � � � � � � down to
� � � � � � ( �

�
� ),

since these values are halfway between two possible results, and we prefer to have the least significant bit
equal to zero.

2.4.5 Floating-Point Operations

The IEEE standard specifies a simple rule for determining the result of an arithmetic operation such as
addition or multiplication. Viewing floating-point values � and � as real numbers, and some operation �
defined over real numbers, the computation should yield ���
	 ��� � � � � � , the result of applying rounding
to the exact result of the real operation. In practice, there are clever tricks floating-point unit designers
use to avoid performing this exact computation, since the computation need only be sufficiently precise to
guarantee a correctly rounded result. When one of the arguments is a special value such as �

�
,
�

or � 
 � ,
the standard specifies conventions that attempt to be reasonable. For example

� � � �
is defined to yield �

�
,

while
� � � �

is defined to yield
���

.

One strength of the IEEE standard’s method of specifying the behavior of floating-point operations is that
it is independent of any particular hardware or software realization. Thus, we can examine its abstract
mathematical properties without considering how it is actually implemented.

We saw earlier that integer addition, both unsigned and two’s-complement, forms an Abelian group. Ad-
dition over real numbers also forms an Abelian group, but we must consider what effect rounding has on
these properties. Let us define � +f � to be �
�
	 ��� � � � � � . This operation is defined for all values of �
and � , although it may yield infinity even when both � and � are real numbers due to overflow. The op-
eration is commutative, with � +f � � � +f � for all values of � and � . On the other hand, the operation
is not associative. For example, with single-precision floating point the expression (3.14+1e10)-1e10
would evaluate to 0.0—the value 3.14 would be lost due to rounding. On the other hand, the expression
3.14+(1e10-1e10) would evaluate to 3.14. As with an Abelian group, most values have inverses
under floating-point addition, that is, � +f � � � �

. The exceptions are infinities (since
��� � � � � 
 � ),

and � 
 � ’s, since � 
 � +f � � � 
 � for any � .

The lack of associativity in floating-point addition is the most important group property that is lacking. It has
important implications for scientific programmers and compiler writers. For example, suppose a compiler
is given the following code fragment:

x = a + b + c;
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y = b + c + d;

The compiler might be tempted to save one floating-point addition by generating the following code:

t = b + c;
x = a + t;
y = t + d;

However, this computation might yield a different value for x than would the original, since it uses a different
association of the addition operations. In most applications, the difference would be so small as to be
inconsequential. Unfortunately, compilers have no way of knowing what trade-offs the user is willing to
make between efficiency and faithfulness to the exact behavior of the original program. As a result, they tend
to be very conservative, avoiding any optimizations that could have even the slightest effect on functionality.

On the other hand, floating-point addition satisfies the following monotonicity property: if � � � then� � � � � � � for any values of � , � , and � other than � 
 � . This property of real (and integer) addition is
not obeyed by unsigned or two’s-complement addition.

Floating-point multiplication also obeys many of the properties one normally associates with multiplication,
namely those of a ring. Let us define � *f � to be ��� 	 � � � � � � � . This operation is closed under multi-
plication (although possibly yielding infinity or � 
 � ), it is commutative, and it has 1.0 as a multiplicative
identity. On the other hand, it is not associative due to the possibility of overflow or the loss of precision due
to rounding. For example, with single-precision floating point, the expression (1e20*1e20)*1e-20will
evaluate to

���
, while 1e20*(1e20*1e-20) will evaluate to 1e20. In addition, floating-point multi-

plication does not distribute over addition. For example, with single-precision floating point, the expression
1e20*(1e20-1e20)will evaluate to 0.0, while 1e20*1e20-1e20*1e20will evaluate to NaN.

On the other hand, floating-point multiplication satisfies the following monotonicity properties for any val-
ues of � , � , and

�
other than � 
 � :

� � � and
� � � � � *f � � � *f �

� � � and
� � � � � *f � � � *f �

In addition, we are also guaranteed that � *f � � �
, as long as � �� � 
 � . As we saw earlier, none of these

monotonicity properties hold for unsigned or two’s-complement multiplication.

This lack of associativity and distributivity is of serious concern to scientific programmers and to compiler
writers. Even such a seemingly simple task as writing code to determine whether two lines intersect in
three-dimensional space can be a major challenge.

2.4.6 Floating Point in C

C provides two different floating-point data types: float and double. On machines that support IEEE
floating point, these data types correspond to single- and double-precision floating point. In addition, the
machines use the round-to-even rounding mode. Unfortunately, since the C standard does require the ma-
chine use IEEE floating point, there are no standard methods to change the rounding mode or to get special
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values such as �
�
,
� �

, �
�

, or � 
 � . Most systems provide a combination of include (‘.h’) files and
procedure libraries to provide access to these features, but the details vary from one system to another.
For example, the GNU compiler GCC defines macros INFINITY (for

���
) and NAN (for � 
 � ) when the

following sequence occurs in the program file:

#define _GNU_SOURCE 1
#include <math.h>

Practice Problem 2.36:

Fill in the following macro definitions to generate the double-precision values
� � , � � , and

�
.

#define POS_INFINITY
#define NEG_INFINITY
#define NEG_ZERO
#endif

You cannot use any include files (such as math.h), but you can make use of the fact that the largest
finite number that can be represented with double precision is around

� � � � ��� . � � .

When casting values between int, float, and double formats, the program changes the numeric values
and the bit representations as follows (assuming a 32-bit int):

� From int to float, the number cannot overflow, but it may be rounded.

� From int or float to double, the exact numeric value can be preserved because double has
both greater range (i.e., the range of representable values), as well as greater precision (i.e., the number
of significant bits).

� From double to float, the value can overflow to
���

or �
�

, since the range is smaller. Other-
wise, it may be rounded, because the precision is smaller.

� From float or double to int the value will be truncated toward zero. For example,
��� �����

will be
converted to

�
, while �

��� �����
will be converted to �

�
. Note that this behavior is very different from

rounding. Furthermore, the value may overflow. The C standard does not specify a fixed result for
this case, but on most machines the result will either be

�	��

� � or
�	� � � � , where � is the number

of bits in an int.

*Intel IA32 Floating-Point Arithmetic

In the next chapter, we will begin an in-depth study of Intel IA32 processors, the processor found in most of
today’s personal computers. Here we highlight an idiosyncrasy of these machines that can seriously affect
the behavior of programs operating on floating-point numbers when compiled with GCC.

IA32 processors, like most other processors, have special memory elements called registers for holding
floating-point values as they are being computed and used. Values held in registers can be read and written
more quickly than those held in the main memory. The unusual feature of IA32 is that the floating-point
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registers use a special 80-bit extended-precision format to provide a greater range and precision than the
normal 32-bit single-precision and 64-bit double-precision formats used for values held in memory. As
described in Homework Problem 2.58, the extended-precision representation is similar to an IEEE floating-
point format with a 15-bit exponent (i.e.,

� � � �
) and a 63-bit fraction (i.e., � � 	��

). All single and
double-precision numbers are converted to this format as they are loaded from memory into floating-point
registers. The arithmetic is always performed in extended precision. Numbers are converted from extended
precision to single or double-precision format as they are stored in memory.

This extension to 80 bits for all register data and then contraction to a smaller format for all memory data
has some undesirable consequences for programmers. It means that storing a value in memory and then
retrieving it can change its value, due to rounding, underflow, or overflow. This storing and retrieving is not
always visible to the C programmer, leading to some very peculiar results.

The following example illustrates this property:

code/data/fcomp.c

1 double recip(int denom)
2 {
3 return 1.0/(double) denom;
4 }
5

6 void do_nothing() {} /* Just like the name says */
7

8 void test1(int denom)
9 {

10 double r1, r2;
11 int t1, t2;
12

13 r1 = recip(denom); /* Stored in memory */
14 r2 = recip(denom); /* Stored in register */
15 t1 = r1 == r2; /* Compares register to memory */
16 do_nothing(); /* Forces register save to memory */
17 t2 = r1 == r2; /* Compares memory to memory */
18 printf("test1 t1: r1 %f %c= r2 %f\n", r1, t1 ? ’=’ : ’!’, r2);
19 printf("test1 t2: r1 %f %c= r2 %f\n", r1, t2 ? ’=’ : ’!’, r2);
20 }

code/data/fcomp.c

Variables r1 and r2 are computed by the same function with the same argument. One would expect them
to be identical. Furthermore, both variables t1 and t2 are computing by evaluating the expression r1 ==
r2, and so we would expect them both to equal 1. There are no apparent hidden side effects—function
recip does a straightforward reciprocal computation, and, as the name suggests, function do_nothing
does nothing. When the file is compiled with optimization flag ‘-O2’ and run with argument 10, however,
we get the following result:

test1 t1: r1 0.100000 != r2 0.100000
test1 t2: r1 0.100000 == r2 0.100000
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The first test indicates the two reciprocals are different, while the second indicates they are the same! This
is certainly not what we expect, nor what we want. Understanding all of the details of this example requires
studying the machine-level floating-point code generated by GCC (see Section 3.14), but the comments in
the code provide a clue as to why this outcome occurs. The value computed by function recip returns its
result in a floating-point register. Whenever procedure test1 calls some function, it must store any value
currently in a floating-point register onto the main program stack, where local variables for a function are
stored. In performing this store, the processor converts the extended-precision register values to double-
precision memory values. Thus, before making the second call to recip (line 14), variable r1 is converted
and stored as a double-precision number. After the second call, variable r2 has the extended-precision
value returned by the function. In computing t1 (line 15), the double-precision number r1 is compared to
the extended-precision number r2. Since

� � �
cannot be represented exactly in either format, the outcome

of the test is false. Before calling function do_nothing (line 16), r2 is converted and stored as a double-
precision number. In computing t2 (line 17), two double-precision numbers are compared, yielding true.

This example demonstrates a deficiency of GCC on IA32 machines (the same result occurs for both Linux
and Microsoft Windows). The value associated with a variable changes due to operations that are not visible
to the programmer, such as the saving and restoring of floating-point registers. Our experiments with the
Microsoft Visual C++ compiler indicate that it does not have this problem.

Aside: Why should we be concerned about these inconsistencies?
As we will discuss in Chapter 5, one of the fundamental principles of optimizing compilers is that programs should
produce the exact same results whether or not optimization is enabled. Unfortunately, GCC does not satisfy this
requirement for floating-point code on IA32 machines. End Aside.

There are several ways to overcome this problem, although none are ideal. The simplest is to invoke GCC

with the command-line option “-ffloat-store” indicating that the result of every floating-point com-
putation should be stored to memory and read back before using, rather than simply held in a register. This
will force every computed value to be converted to the lower-precision form. This slows down the program
somewhat but makes the behavior more predictable. Unfortunately, we have found that GCC does not follow
this write-then-read convention strictly, even when given the command-line option. For example, consider
the following function:

code/data/fcomp.c

1 void test2(int denom)
2 {
3 double r1;
4 int t1;
5 r1 = recip(denom); /* Default: register, Forced store: memory */
6 t1 = r1 == 1.0/(double) denom; /* Compares register or memory to register */
7 printf("test2 t1: r1 %f %c= 1.0/10.0\n", r1, t1 ? ’=’ : ’!’);
8 }

code/data/fcomp.c

When compiled with just the “-O2” option, t1 gets value 1—the comparison is made between two register
values. When compiled with the “-ffloat-store” flag, t1 gets value 0! Although the result of the
call to recip is written to memory and read back into a register, the computed value 1.0/(double)
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denom is kept in a register. Overall, we have found that seemingly minor changes in a program can cause
these tests to succeed or fail in unpredictable ways.

As an alternative, we can have GCC use extended precision in all of its computations by declaring all of the
variables to be long double as shown in the following code:

code/data/fcomp.c

1 long double recip_l(int denom)
2 {
3 return 1.0/(long double) denom;
4 }
5

6 void test3(int denom)
7 {
8 long double r1, r2;
9 int t1, t2, t3;

10

11 r1 = recip_l(denom); /* Stored in memory */
12 r2 = recip_l(denom); /* Stored in register */
13 t1 = r1 == r2; /* Compares register to memory */
14 do_nothing(); /* Forces register save to memory */
15 t2 = r1 == r2; /* Compares memory to memory */
16 t3 = r1 == 1.0/(long double) denom; /* Compare memory to register */
17 printf("test3 t1: r1 %f %c= r2 %f\n",
18 (double) r1, t1 ? ’=’ : ’!’, (double) r2);
19 printf("test3 t2: r1 %f %c= r2 %f\n",
20 (double) r1, t2 ? ’=’ : ’!’, (double) r2);
21 printf("test3 t3: r1 %f %c= 1.0/10.0\n",
22 (double) r1, t2 ? ’=’ : ’!’);
23 }

code/data/fcomp.c

The declaration long double is allowed as part of the ANSI C standard, although for most machines and
compilers, this declaration is equivalent to an ordinary double. For GCC on IA32 machines, however, it
uses the extended-precision format for memory data as well as for floating point register data. This allows
us to take full advantage of the wider range and greater precision provided by the extended-precision format
while avoiding the anomalies we have seen in our earlier examples. Unfortunately, this solution comes at a
price. GCC uses 12 bytes to store a long double, increasing memory consumption by 50%. (Although 10
bytes would suffice, it rounds this up to 12 to give a better memory performance. The same allocation is used
on both Linux and Windows machines). Transferring these longer data between registers and memory takes
more time, too. Still, this is the best option for programs that want to get the most accurate and predictable
results.

Aside: Ariane 5: the high cost of floating-point overflow.
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Converting large floating-point numbers to integers is a common source of programming errors. Such an error had
disastrous consequences for the maiden voyage of the Ariane 5 rocket, on June 4, 1996. Just 37 seconds after liftoff,
the rocket veered off its flight path, broke up, and exploded. Communication satellites valued at $500 million were
on board the rocket.

A later investigation [50] showed that the computer controlling the inertial navigation system had sent invalid data to
the computer controlling the engine nozzles. Instead of sending flight control information, it had sent a diagnostic
bit pattern indicating that an overflow had occurred during the conversion of a 64-bit floating-point number to a
16-bit signed integer.

The value that overflowed measured the horizontal velocity of the rocket, which could be more than five times
higher than that achieved by the earlier Ariane 4 rocket. In the design of the Ariane 4 software, they had carefully
analyzed the numeric values and determined that the horizontal velocity would never overflow a 16-bit number.
Unfortunately, they simply reused this part of the software in the Ariane 5 without checking the assumptions on
which it had been based. End Aside.

Practice Problem 2.37:

Assume variables x, f, and d are of type int, float, and double, respectively. Their values are
arbitrary, except that neither f nor d equals

� � , � � , or
� ���

. For each of the following C expressions,
either argue that it will always be true (i.e., evaluate to 1) or give a value for the variables such that it is
not true (i.e., evaluates to 0).

A. x == (int)(float) x

B. x == (int)(double) x

C. f == (float)(double) f

D. d == (float) d

E. f == -(-f)

F. 2/3 == 2/3.0

G. (d >= 0.0) || ((d*2) < 0.0)

H. (d+f)-d == f
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2.5 Summary

Computers encode information as bits, generally organized as sequences of bytes. Different encodings
are used for representing integers, real numbers, and character strings. Different models of computers use
different conventions for encoding numbers and for ordering the bytes within multibyte data.

The C language is designed to accomodate a wide range of different implementations in terms of word
sizes and numeric encodings. Most current machines have 32-bit word sizes, although high-end machines
increasingly have 64-bit words. Most machines use two’s-complement encoding of integers and IEEE
encoding of floating point. Understanding these encodings at the bit level, as well as understanding the
mathematical characteristics of the arithmetic operations, is important for writing programs that operate
correctly over the full range of numeric values.

The C standard dictates that when casting between signed and unsigned integers, the underlying bit pattern
should not change. On a two’s-complement machine, this behavior is characterized by functions

� � � � and� ��� � , for a � -bit value. The implicit casting of C gives results that many programmers do not anticipate,
often leading to program bugs.

Due to the finite lengths of the encodings, computer arithmetic has properties quite different from conven-
tional integer and real arithmetic. The finite length can cause numbers to overflow, when they exceed the
range of the representation. Floating-point values can also underflow, when they are so close to

� ���
that they

are changed to zero.

The finite integer arithmetic implemented by C, as well as most other programming languages, has some
peculiar properties compared to true integer arithmetic. For example, the expression x*x can evaluate to
a negative number due to overflow. Nonetheless, both unsigned and two’s-complement arithmetic satisfies
the properties of a ring. This allows compilers to do many optimizations. For example, in replacing the
expression 7*x by (x<<3)-x, we make use of the associative, commutative and distributive properties,
along with the relationship between shifting and multiplying by powers of two.

We have seen several clever ways to exploit combinations bit-level operations and arithmetic operations. For
example, we saw that with two’s-complement arithmetic, ˜x+1 is equivalent to -x. As another example,
suppose we want a bit pattern of the form

� � � � � �
� � � � � � � �
� �
�
, consisting of � � �

0s followed by
�

1s. Such
bit patterns are useful for masking operations. This pattern can be generated by the C expression (1<<k)-
1, exploiting the property that the desired bit pattern has numeric value �

�
� �

. For example, the expression
(1<<8)-1will generate the bit pattern 0xFF.

Floating-point representations approximate real numbers by encoding numbers of the form � � � � . The most
common floating-point representation was defined by IEEE Standard 754. It provides for several different
precisions, with the most common being single (32 bits) and double (64 bits). IEEE floating point also has
representations for special values

�
and not-a-number.

Floating-point arithmetic must be used very carefully, because it has only limited range and precision, and
because it does not obey common mathematical properties such as associativity.
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Bibliographic Notes

Reference books on C [41, 32] discuss properties of the different data types and operations. The C standard
does not specify details such as precise word sizes or numeric encodings. Such details are intentionally
omitted to make it possible to implement C on a wide range of different machines. Several books have been
written giving advice to C programmers [42, 51] that warn about problems with overflow, implicit casting
to unsigned, and some of the other pitfalls we have covered in this chapter. These books also provide
helpful advice on variable naming, coding styles, and code testing. Books on Java (we recommend the
one coauthored by James Gosling, the creator of the language [1]) describe the data formats and arithmetic
operations supported by Java.

Most books on logic design [88, 39] have a section on encodings and arithmetic operations. Such books
describe different ways of implementing arithmetic circuits. Overton’s book on IEEE floating point [57]
provides a detailed description of the format as well as the properties from the perspective of a numerical
applications programmer.

Homework Problems

Homework Problem 2.38 [Category 1]:

Compile and run the sample code that uses show bytes (file show-bytes.c) on different machines to
which you have access. Determine the byte orderings used by these machines.

Homework Problem 2.39 [Category 1]:

Try running the code for show bytes for different sample values.

Homework Problem 2.40 [Category 1]:

Write procedures show_short, show_long, and show_double that print the byte representations of
C objects of types short int, long int, and double, respectively. Try these out on several machines.

Homework Problem 2.41 [Category 2]:

Write a procedure is_little_endian that will return 1 when compiled and run on a little-endian ma-
chine, and will return 0 when compiled and run on a big-endian machine. This program should run on any
machine, regardless of its word size.

Homework Problem 2.42 [Category 2]:

Write a C expression that will yield a word consisting of the least significant byte of x, and the remaining
bytes of y. For operands x � 0x89ABCDEF and y � 0x76543210, this would give 0x765432EF.

Homework Problem 2.43 [Category 2]:

Using only bit-level and logical operations, write C expressions that yield 1 for the described condition and
0 otherwise. Your code should work on a machine with any word size. Assume x is an integer.

A. Any bit of x equals 1.
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B. Any bit of x equals 0.

C. Any bit in the least significant byte of x equals 1.

D. Any bit in the least significant byte of x equals 0.

Homework Problem 2.44 [Category 3]:

Write a function int_shifts_are_arithmetic() that yields 1 when run on a machine that uses
arithmetic right shifts for int’s and 0 otherwise. Your code should work on a machine with any word size.
Test your code on several machines. Write and test a procedure unsigned_shifts_are_arithmetic()
that determines the form of shifts used for unsigned int’s.

Homework Problem 2.45 [Category 2]:

You are given the task of writing a procedure int_size_is_32() that yields 1 when run on a machine
for which an int is 32 bits, and yields 0 otherwise. Here is a first attempt:

1 /* The following code does not run properly on some machines */
2 int bad_int_size_is_32()
3 {
4 /* Set most significant bit (msb) of 32-bit machine */
5 int set_msb = 1 << 31;
6 /* Shift past msb of 32-bit word */
7 int beyond_msb = 1 << 32;
8

9 /* set_msb is nonzero when word size >= 32
10 beyond_msb is zero when word size <= 32 */
11 return set_msb && !beyond_msb;
12 }

When compiled and run on a 32-bit SUN SPARC, however, this procedure returns 0. The following compiler
message gives us an indication of the problem:

warning: left shift count >= width of type

A. In what way does our code fail to comply with the C standard?

B. Modify the code to run properly on any machine for which int’s are at least 32 bits.

C. Modify the code to run properly on any machine for which int’s are at least 16 bits.

Homework Problem 2.46 [Category 1]:

You just started working for a company that is implementing a set of procedures to operate on a data structure
where four signed bytes are packed into a 32-bit unsigned. Bytes within the word are numbered from 0
(least significant) to 3 (most significant). You have been assigned the task of implementing a function for a
machine using two’s-complement arithmetic and arithmetic right shifts with the following prototype:
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/* Declaration of data type where 4 bytes are packed
into an unsigned */

typedef unsigned packed_t;

/* Extract byte from word. Return as signed integer */
int xbyte(packed_t word, int bytenum);

That is, the function will extract the designated byte and sign extend it to be a 32-bit int.

Your predecessor (who was fired for his incompetence) wrote the following code:

/* Failed attempt at xbyte */
int xbyte(packed_t word, int bytenum)
{

return
(word >> (bytenum << 3)) & 0xFF;

}

A. What is wrong with this code?

B. Give a correct implementation of the function that uses only left and right shifts, along with one
subtraction.

Homework Problem 2.47 [Category 1]:

Fill in the following table showing the effects of complementing and incrementing several five-bit vectors
in the style of Figure 2.20. Show both the bit vectors and the numeric values.

�� ˜ �� ���
��� � ˜ �� �� � ��� � �
�

� � �������
�
� ��� � � � �
� ���������
�
� � � � � � �

Homework Problem 2.48 [Category 2]:

Show that first decrementing and then complementing is equivalent to complementing and then increment-
ing. That is, for any signed value x, the C expressions -x, ˜x+1, and ˜(x-1) yield identical results. What
mathematical properties of two’s-complement addition does your derivation rely on?

Homework Problem 2.49 [Category 3]:

Suppose we want to compute the complete � � -bit representation of � � � , where both � and � are unsigned,
on a machine for which data type unsigned is � bits. The low-order � bits of the product can be computed
with the expression x*y, so we only require a procedure with prototype
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unsigned int unsigned_high_prod(unsigned x, unsigned y);

that computes the high-order � bits of � � � for unsigned variables.

We have access to a library function with prototype:

int signed_high_prod(int x, int y);

that computes the high-order � bits of � � � for the case where � and � are in two’s-complement form. Write
code calling this procedure to implement the function for unsigned arguments. Justify the correctness of
your solution.

[Hint:] Look at the relationship between the signed product � � � and the unsigned product � � � �
�

in the
derivation of Equation 2.18.

Homework Problem 2.50 [Category 2]:

Suppose we are given the task of generating code to multiply integer variable x by various different constant
factors

�
. To be efficient we want to use only the operations +, -, and <<. For the following values of

�
,

write C expressions to perform the multiplication using at most three operations per expression.

A.
� � �

:

B.
� � �

:

C.
� � � � :

D.
� � � � 	

:

Homework Problem 2.51 [Category 2]:

Write C expressions to generate the bit patterns that follow, where � �
represents

�
repetitions of symbol � .

Assume a � -bit data type. Your code may contain references to parameters j and k, representing the values
of � and

�
, but not a parameter representing � .

A.
� ��� � � �

.

B.
� ��� � � � � � � �

.

Homework Problem 2.52 [Category 2]:

Suppose we number the bytes in a � -bit word from 0 (least significant) to � � � � �
(most significant). Write

code for the following C function, which will return an unsigned value in which byte i of argument x has
been replaced by byte b:

unsigned replace_byte (unsigned x, int i, unsigned char b);
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Here are some examples showing how the function should work:

replace_byte(0x12345678, 2, 0xAB) --> 0x12AB5678
replace_byte(0x12345678, 0, 0xAB) --> 0x123456AB

Homework Problem 2.53 [Category 3]:

Fill in code for the following C functions. Function srl performs a logical right shift using an arithmetic
right shift (given by value xsra), followed by other operations not including right shifts or division. Func-
tion sra performs an arithmetic right shift using a logical right shift (given by value xsrl), followed by
other operations not including right shifts or division. You may assume that int’s are 32-bits long. The
shift amount k can range from 0 to 31.

unsigned srl(unsigned x, int k)
{

/* Perform shift arithmetically */
unsigned xsra = (int) x >> k;

/* ... */

}

int sra(int x, int k)
{

/* Perform shift logically */
int xsrl = (unsigned) x >> k;

/* ... */

}

Homework Problem 2.54 [Category 1]:

We are running programs on a machine where values of type int are 32 bits. They are represented in two’s
complement, and they are right shifted arithmetically. Values of type unsigned are also 32 bits.

We generate arbitrary values x and y, and convert them to other unsigned as follows:

/* Create some arbitrary values */
int x = random();
int y = random();
/* Convert to unsigned */
unsigned ux = (unsigned) x;
unsigned uy = (unsigned) y;
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For each of the following C expressions, you are to indicate whether or not the expression always yields
1. If it always yields 1, describe the underlying mathematical principles. Otherwise, give an example of
arguments that make it yield 0.

A. (x<y) == (-x>-y).

B. ((x+y)<<4) + y-x == 17*y+15*x.

C. ˜x+˜y == ˜(x+y).

D. (int) (ux-uy) == -(y-x).

E. ((x >> 1) << 1) <= x.

Homework Problem 2.55 [Category 2]:

Consider numbers having a binary representation consisting of an infinite string of the form
� � � � � � � � � � � ,

where � is a
�

-bit sequence. For example, the binary representation of
�

� is
� ��� � � � � � � � � � � ( � � � �

), while
the representation of

�
� is

� ��� � ��� � � ��� � � ��� � � � ( � � � � ���
).

A. Let
� � ����� � � � � , that is, the number having binary representation � . Give a formula in terms of

�

and
�

for the value represented by the infinite string. [Hint: Consider the effect of shifting the binary
point

�
positions to the right.]

B. What is the numeric value of the string for the following values of � ?

(a)
� � �

(b)
� � � �

(c)
� � � �����

Homework Problem 2.56 [Category 1]:

Fill in the return value for the following procedure that tests whether its first argument is greater than or
equal to its second. Assume the function f2u returns an unsigned 32-bit number having the same bit
representation as its floating-point argument. You can assume that neither argument is � 
 � . The two
flavors of zero:

� �
and �

�
are considered equal.

int float_ge(float x, float y)
{

unsigned ux = f2u(x);
unsigned uy = f2u(y);

/* Get the sign bits */
unsigned sx = ux >> 31;
unsigned sy = uy >> 31;
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/* Give an expression using only ux, uy, sx, and sy */
return /* ... */ ;

}

Homework Problem 2.57 [Category 1]:

Given a floating-point format with a
�

-bit exponent and an � -bit fraction, write formulas for the exponent
� , significand

�
, the fraction � , and the value � for the quantities that follow. In addition, describe the bit

representation.

A. The number
�����

.

B. The largest odd integer that can be represented exactly.

C. The reciprocal of the smallest positive normalized value.

Homework Problem 2.58 [Category 1]:

Intel-compatible processors also support an “extended precision” floating-point format with an 80-bit word
divided into a sign bit,

� � � �
exponent bits, a single integer bit, and � � 	��

fraction bits. The integer
bit is an explicit copy of the implied bit in the IEEE floating-point representation. That is, it equals 1 for
normalized values and 0 for denormalized values. Fill in the following table giving the approximate values
of some “interesting” numbers in this format:

Description Extended precision

Value Decimal

Smallest denormalized

Smallest normalized

Largest normalized

Homework Problem 2.59 [Category 1]:

Consider a 16-bit floating-point representation based on the IEEE floating-point format, with one sign bit,
seven exponent bits (

� � � ), and eight fraction bits ( � � � ). The exponent bias is �
� � �

� � � 	��
.

Fill in the table that follows for each of the numbers given, with the following instructions for each col-
umn:

Hex: The four hexadecimal digits describing the encoded form.
�

: The value of the significand. This should be a number of the form � or
�

� , where � is an integer,

and � is an integral power of 2. Examples include: 0,
	 �	

� , and
�
��� 	 .
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� : The integer value of the exponent.

� : The numeric value represented. Use the notation � or � � � �

, where � and � are integers.

As an example, to represent the number
�
� , we would have ��� �

,
� � �

� , and � � �
. Our number would

therefore have an exponent field of 0x40 (decimal value
	�� � � � 	 � ) and a significand field 0xC0 (binary��� � � � � � � � ), giving a hex representation 40C0.

You need not fill in entries marked “—”.

Description Hex
� � �

� �
—

Smallest value �
�

256 —-

Largest denormalized
� � — — —

Number with hex representation 3AA0 —

Homework Problem 2.60 [Category 1]:

We are running programs on a machine where values of type int have a 32-bit two’s-complement repre-
sentation. Values of type float use the 32-bit IEEE format, and values of type double use the 64-bit
IEEE format.

We generate arbitrary integer values x, y, and z, and convert them to other double as follows:

/* Create some arbitrary values */
int x = random();
int y = random();
int z = random();
/* Convert to double */
double dx = (double) x;
double dy = (double) y;
double dz = (double) z;

For each of the following C expressions, you are to indicate whether or not the expression always yields
1. If it always yields 1, describe the underlying mathematical principles. Otherwise, give an example of
arguments that make it yield 0. Note that you cannot use a IA32 machine running GCC to test your answers,
since it would use the 80-bit extended-precision representation for both float and double.

A. (double)(float) x == dx.

B. dx + dy == (double) (y+x).

C. dx + dy + dz == dz + dy + dx.
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D. dx * dy * dz == dz * dy * dx.

E. dx / dx == dy / dy.

Homework Problem 2.61 [Category 1]:

You have been assigned the task of writing a C function to compute a floating-point representation of � �

.
You realize that the best way to do this is to directly construct the IEEE single-precision representation of
the result. When � is too small, your routine will return

� ���
. When � is too large, it will return

���
. Fill in

the blank portions of the code that follows to compute the correct result. Assume the function u2f returns
a floating-point value having an identical bit representation as its unsigned argument.

float fpwr2(int x)

/* Result exponent and significand */
unsigned exp, sig;
unsigned u;

if (x < ______)
/* Too small. Return 0.0 */
exp = ____________;
sig = ____________;

else if (x < ______)
/* Denormalized result */
exp = ____________;
sig = ____________;

else if (x < ______)
/* Normalized result. */
exp = ____________;
sig = ____________;

else
/* Too big. Return +oo */
exp = ____________;
sig = ____________;

/* Pack exp and sig into 32 bits */
u = exp << 23 | sig;
/* Return as float */
return u2f(u);

Homework Problem 2.62 [Category 1]:

Around 250 B.C., the Greek mathematician Archimedes proved that
� � �� � � � �

� �� . Had he had access
to a computer and the standard library <math.h>, he would have been able to determine that the single-
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precision floating-point approximation of � has the hexadecimal representation 0x40490FDB. Of course,
all of these are just approximations, since � is not rational.

A. What is the fractional binary number denoted by this floating-point value?

B. What is the fractional binary representation of
� �� ? [Hint: See Problem 2.55].

C. At what bit position (relative to the binary point) do these two approximations to � diverge?

Solutions to Practice Problems

Problem 2.1 Solution: [Pg. 28]

Understanding the relation between hexadecimal and binary formats will be important once we start looking
at machine-level programs. The method for doing these conversions is in the text, but it takes a little practice
for it to become familiar

A. 0x8F7A93 to binary:

Hexadecimal 8 F 7 A 9 3
Binary

� � � � ������� � ����� � � � � � � � � � � ���

B. Binary
� � ��� � ������� � � ����� � �

to hexadecimal:

Binary
� � ��� � ����� � � � � ��� � �

Hexadecimal B 7 9 C

C. 0xC4E5D to binary:

Hexadecimal C 4 E 5 D
Binary

��� � � � � � � ����� � � � � � ��� � �

D. Binary
��� � � � ��� � ��� � ����� ��� � ��� � � �

to hexadecimal:

Binary
��� � � � � � ����� ����� � � ��� �

Hexadecimal 3 5 7 E 6

Problem 2.2 Solution: [Pg. 29]

This problem gives you a chance to think about powers of two and their hexadecimal representations.
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� � � (Decimal) � � (Hexadecimal)
11 2048 0x800
7 128 0x80

13 8192 0x200
17 131072 0x2000
16 65536 0x1000
8 256 0x100
5 32 0x20

Problem 2.3 Solution: [Pg. 29]

This problem gives you a chance to try out conversions between hexadecimal and decimal representations
for some smaller numbers. For larger ones, it becomes much more convenient and reliable to use a calculator
or conversion program.

Decimal Binary Hexadecimal
0 00000000 00� � � � � � 	 � � 0011 0111 37��� 	 � � � � 	 � � 1000 1000 88

� � � � � � � � 	 � �
1111 0011 F3� � � 	 � � � ��� 0101 0010 52� � � � 	 � � � � � � � 1010 1100 AC� ��� � 	 � � � � � � 1110 0111 E7� � � � 	 � � � � 	 � 1010 0111 A7� � � 	 � � � � 	 � 0011 1110 3E��� � � 	 � � � � � ��� 1011 1100 BC

Problem 2.4 Solution: [Pg. 31]

When you begin debugging machine-level programs, you will find many cases where some simple hexadec-
imal arithmetic would be useful. You can always convert numbers to decimal, perform the arithmetic, and
convert them back, but being able to work directly in hexadecimal is more efficient and informative.

A. 0x502c
�
0x8 � 0x5034. Adding 8 to hex c gives 4 with a carry of 1.

B. 0x502c � 0x30 � 0x4ffc. Subtracting 3 from 2 in the second digit position requires a borrow
from the third. Since this digit is 0, we must also borrow from the fourth position.

C. 0x502c
� 	 � � 0x506c. Decimal 64 ( �

	
) equals hexadecimal 0x40.

D. 0x51da � 0x502c � 0xae. To subtract hex c (decimal 12) from hex a (decimal 10), we borrow
16 from the second digit, giving hex e (decimal 14). In the second digit, we now subtract 2 from hex
c (decimal 12), giving hex a (decimal 10).

Problem 2.5 Solution: [Pg. 38]

This problem tests your understanding of the byte representation of data and the two different byte orderings.
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A. Little endian: 78 Big endian: 12

B. Little endian: 78 56 Big endian: 12 34

C. Little endian: 78 56 34 Big endian: 12 34 56

Recall that show_bytes enumerates a series of bytes starting from the one with lowest address and work-
ing toward the one with highest address. On a little-endian machine it would list the bytes from least
significant to most. On a big-endian machine, it would list bytes from the most significant byte to the least.

Problem 2.6 Solution: [Pg. 38]

This problem is another chance to practice hexadecimal to binary conversion. It also gets you thinking about
integer and floating-point representations. We will explore these representations in more detail later in this
chapter.

A. Using the notation of the example in the text, we write the two strings as follows:

0 0 3 5 4 3 2 1
00000000001101010100001100100001

*********************
4 A 5 5 0 C 8 4

01001010010101010000110010000100

B. With the second word shifted two positions relative to the first, we find a sequence with 21 matching
bits.

C. We find all bits of the integer embedded in the floating-point number, except for the most signficant
bit having value 1. Such is the case for the example in the text as well. In addition, the floating-point
number has some nonzero high-order bits that do not match those of the integer.

Problem 2.7 Solution: [Pg. 39]

It prints 41 42 43 44 45 46. Recall also that the library routine strlen does not count the terminat-
ing null character, and so show_bytes printed only through the character ‘F.’

Problem 2.8 Solution: [Pg. 43]

This problem is a drill to help you become more familiar with Boolean operations.

Operation Result� � � ��� � � � � �
�
� � � � � � � � � �
�
˜ � � � � � � � ��� � �
˜
� � � � � � � � � � �

� & � � � � � � � � � �
�
� | � � � ��������� � �
�
� ˆ � � � � ������� � � �
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Problem 2.9 Solution: [Pg. 43]

This problem illustrates how Boolean algebra can be used to describe and reason about real-world systems.
We can see that this color algebra is identical to the Boolean algebra over bit vectors of length 3.

A. Colors are complemented by complementing the values of
�

, � , and � . From this we can see that
White is the complement of Black, Yellow is the complement of Blue, Magenta is the complement of
Green, and Cyan is the complement of Red.

B. Black is 0, and White is 1.

C. We perform Boolean operations based on a bit-vector representation of the colors. From this we get
the following:

Blue (001) | Red (100) � Magenta (101)
Magenta (101) & Cyan (011) � Blue (001)

Green (010) ˆ White (111) � Magenta (101)

Problem 2.10 Solution: [Pg. 44]

This procedure relies on the fact that EXCLUSIVE-OR is commutative and associative, and that � ˆ � � �
for any � . We will see in Chapter 5 that the code does not work correctly when the two pointers x and y are
equal, that is, they point to the same location.

Step *x *y
Initially � �
Step 1 � ˆ � �
Step 2 � ˆ � � � ˆ � � ˆ � � � � ˆ � � ˆ � ���
Step 3 � � ˆ � � ˆ � � � � ˆ � � ˆ � � � �

Problem 2.11 Solution: [Pg. 45]

Here are the expressions:

A. x | ˜0xFF

B. x ˆ 0xFF

C. x & ˜0xFF

These expressions are typical of the kind commonly found in performing low-level bit operations. The
expression ˜0xFF creates a mask where the 8 least-significant bits equal 0 and the rest equal 1. Observe
that such a mask will be generated regardless of the word size. By contrast, the expression 0xFFFFFF00
would only work on a 32-bit machine.

Problem 2.12 Solution: [Pg. 45]

These problems help you think about the relation between Boolean operations and typical masking opera-
tions. Here is the code:
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/* Bit Set */
int bis(int x, int m)
{

int result = x | m;
return result;

}

/* Bit Clear */
int bic(int x, int m)
{

int result = x & ˜m;
return result;

}

It is easy to see that bis is equivalent to Boolean OR—a bit is set in z if either this bit is set in x or it is set
in m.

The bic operation is a bit more subtle. We want to set a bit of z to 0 if the corresponding bit of m equals
1. If we complement the mask giving ˜m, then we want to set a bit of z to 0 if the corresponding bit of the
complemented mask equals 0. We can do this with the AND operation.

Problem 2.13 Solution: [Pg. 46]

This problem highlights the relation between bit-level Boolean operations and logic operations in C:

Expression Value Expression Value
x & y 0x02 x && y 0x01
x | y 0xF7 x || y 0x01
˜x | ˜y 0xFD !x || !y 0x00
x & !y 0x00 x && ˜y 0x01

Problem 2.14 Solution: [Pg. 47]

The expression is !(x ˆ y).

That is xˆy will be zero if and only if every bit of x matches the corresponding bit of y. We then exploit
the ability of ! to determine whether a word contains any nonzero bit.

There is no real reason to use this expression rather than simply writing x == y, but it demonstrates some
of the nuances of bit-level and logical operations.

Problem 2.15 Solution: [Pg. 47]

This problem is a drill to help you understand the different shift operations.
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x x << 3 x >> 2 x >> 2
(Logical) (Arithmetic)

Hex Binary Binary Hex Binary Hex Binary Hex
0xF0 [11110000] [10000000] 0x80 [00111100] 0x3C [11111100] 0xFC
0x0F [00001111] [01111000] 0x78 [00000011] 0x03 [00000011] 0x03
0xCC [11001100] [01100000] 0x60 [00110011] 0x33 [11110011] 0xF3
0x55 [01010101] [10101000] 0xA8 [00010101] 0x15 [00010101] 0x15

Problem 2.16 Solution: [Pg. 49]

In general, working through examples for very small word sizes is a very good way to understand computer
arithmetic.

The unsigned values correspond to those in Figure 2.1. For the two’s-complement values, hex digits 0
through 7 have a most significant bit of 0, yielding nonnegative values, while while hex digits 8 through F,
have a most significant bit of 1, yielding a negative value.

�� �����
� � �� � �����

� � �� �
Hexadecimal Binary

A [1010] �
� � �

� � � � � �
� � �

� � � 	
0 [0000]

� �
3 [0011] �

�
� �

� � � �
�
� �

� � �
8 [1000] �

� � � � �
� � � �

C [1100] �
� � �

� � � � � �
� � �

� � � �
F [1111] �

� � �
� � �

�
� �

� � � � � �
� � �

� � �
�
� �

� � � �

Problem 2.17 Solution: [Pg. 51]

For a 32-bit machine, any value consisting of eight hexadecimal digits beginning with one of the digits 8
through f represents a negative number. It is quite common to see numbers beginning with a string of f’s,
since the leading bits of a negative number are all 1s. You must look carefully, though. For example, the
number 0x80483b7 has only seven digits. Filling this out with a leading zero gives 0x080483b7, a
positive number.

80483b7: 81 ec 84 01 00 00 sub $0x184,%esp A. 388

80483bd: 53 push %ebx
80483be: 8b 55 08 mov 0x8(%ebp),%edx B. 8

80483c1: 8b 5d 0c mov 0xc(%ebp),%ebx C. 12

80483c4: 8b 4d 10 mov 0x10(%ebp),%ecx D. 16

80483c7: 8b 85 94 fe ff ff mov 0xfffffe94(%ebp),%eax E. -364

80483cd: 01 cb add %ecx,%ebx
80483cf: 03 42 10 add 0x10(%edx),%eax F. 16

80483d2: 89 85 a0 fe ff ff mov %eax,0xfffffea0(%ebp) G. -352

80483d8: 8b 85 10 ff ff ff mov 0xffffff10(%ebp),%eax H. -240

80483de: 89 42 1c mov %eax,0x1c(%edx) I. 28

80483e1: 89 9d 7c ff ff ff mov %ebx,0xffffff7c(%ebp) J. -132

80483e7: 8b 42 18 mov 0x18(%edx),%eax K. 24
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Problem 2.18 Solution: [Pg. 53]

The functions
� ���

and
� ���

are very peculiar from a mathematical perspective. It is important to under-
stand how they behave.

We solve this problem by reordering the rows in the solution of Practice problem 2.16 according to the
two’s-complement value and then listing the unsigned value as the result of the function application. We
show the hexadecimal values to make this process more concrete.

�� (hex) � � ���
� � � �

8 � � �
A � 	 � �
C � � � �
F � � � �
0

� �
3

� �

Problem 2.19 Solution: [Pg. 54]

This exercise tests your understanding of Equation 2.4.

For the first four entries, the values of � are negative and
� ���

� � � � � � � �
�

. For the remaining two entries,
the values of � are nonnegative and

� ���
� � � � � � .

Problem 2.20 Solution: [Pg. 56]

This problem reinforces your understanding of the relation between two’s-complement and unsigned repre-
sentations, and the effects of the C promotion rules. Recall that

�	�����
� � is � � � � � ��� � 	 ��� , and when cast to

unsigned it becomes � � � � ��� � 	 ��� . In addition, if either operand is unsigned, then the other operand will be
cast to unsigned before comparing.

Expression Type Evaluation
-2147483648 == 2147483648U unsigned 1
-2147483648 < -21474836487 signed 1
(unsigned) -2147483648 < -21474836487 unsigned 1
-2147483648 < 21474836487 signed 1
(unsigned) -2147483648 < 21474836487 unsigned 0

Problem 2.21 Solution: [Pg. 58]

The expressions in these functions are common program “idioms” for extracting values from a word in
which multiple bit fields have been packed. They exploit the zero-filling and sign-extending properties of
the different shift operations. Note carefully the ordering of the cast and shift operations. In fun1, the
shifts are performed on unsigned word and hence are logical. In fun2, shifts are performed after casting
word to int and hence are arithmetic.

A.
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w fun1(w) fun2(w)� � � � � � � � �� ��� � ��� � � ���
� � � � � � � �
� � 	 � �

B. Function fun1 extracts a value from the low-order 8 bits of the argument, giving an integer ranging
between

�
and � � � . Function fun2 also extracts a value from the low-order 8 bits of the argument,

but it also peforms sign extension. The result will be a number between �
� ��� and

� � � .

Problem 2.22 Solution: [Pg. 60]

The effect of truncation is fairly intuitive for unsigned numbers, but not for two’s-complement numbers.
This exercise lets you explore its properties using very small word sizes.

Hex Unsigned Two’s complement
Original Truncated Original Truncated Original Truncated

0 0
� � � �

3 3
� � � �

8 0 � � � � �
A 2

� � � � 	 �
F 7

� � � � � � �

As Equation 2.7 states, the effect of this truncation on unsigned values is to simply to find their residue,
modulo 8. The effect of the truncation on signed values is a bit more complex. According to Equation 2.8,
we first compute the modulo 8 residue of the argument. This will give values

�
– � for arguments

�
– � , and

also for arguments � � – �
�
. Then we apply function

� ���
� to these residues, giving two repetitions of the

sequences
�
–
�

and � � – �
�
.

Problem 2.23 Solution: [Pg. 60]

This problem was designed to demonstrate how easily bugs can arise due to the implicit casting from signed
to unsigned. It seems quite natural to pass parameter length as an unsigned, since one would never want
to use a negative length. The stopping criterion i <= length-1 also seems quite natural. But combining
these two yields an unexpected outcome!

Since parameter length is unsigned, the computation
� � �

is performed using unsigned arithmetic, which
is equivalent to modular addition. The result is then

��� 

�
� � (assuming a 32-bit machine). The

�
compar-

ison is also performed using an unsigned comparison, and since any 32-bit number is less than or equal to��� 

�
� � , the comparison always holds! Thus, the code attempts to access invalid elements of array a.

The code can be fixed by either declaring length to be an int, or by changing the test of the for loop to
be i < length.

Problem 2.24 Solution: [Pg. 64]
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This problem is a simple demonstration of arithmetic modulo 16. The easiest way to solve it is to convert
the hex pattern into its unsigned decimal value. For nonzero values of � , we must have � -u� � � � � � � 	

.
Then we convert the complemented value back to hex.

� -u� �
Hex Decimal Decimal Hex
0

� �
0

3
� ���

D
8 � � 8
A

� � 	
6

F
� � �

1

Problem 2.25 Solution: [Pg. 66]

This problem is an exercise to make sure you understand two’s-complement addition.

� � � � � � +t� � Case
� � 	 � ��� � � � �

1� � � � � � � � � � � � �
� � � � � � �
�
� � 	 � � 	 � � � �

1� � � � � � � � � � � � � � � � � � � � �
� � � � � � � 2� ��� � � � � � � � �����
� � ���������
�
� � � � �

3� ������� � � � � � � � �
� � � � � ���
�
� � � 	 � � 	 4� � � � � � � � � � � � � � � � � � � � �

Problem 2.26 Solution: [Pg. 68]

This problem helps you understand two’s-complement negation using a very small word size.

For �
� � , we have
�	�����

� � � � . So � � is its own additive inverse, while other values are negated by
integer negation.

� -t� �
Hex Decimal Decimal Hex
0

� �
0

3
� � � D

8 � � � � 8
A � 	 	

6
F � � �

1

The bit patterns are the same as for unsigned negation.
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Problem 2.27 Solution: [Pg. 71]

This problem is an exercise to make sure you understand two’s-complement multiplication.

Mode � � � � � Truncated � � �

Unsigned
	 � ��� � � � � � � � � � � � � � ��� � � � � � � � � �

Two’s Comp. � � � ��� � � � � � � � � � � � ������� � � � � � � � � � �
Unsigned

� � � � �
� � � �����
� � � � � � �����
� � � �����
�
Two’s Comp.

� � � � �
� � � � �����
� � � � �����������
� � � �����
�
Unsigned � � �����
� � � �����
� � � � ��� � � � �
� � � � � �
�
Two’s Comp. � � � �����
� � � � �����
� � � � � � � � �
� � � � � �
�

Problem 2.28 Solution: [Pg. 72]

In Chapter 3, we will see many examples of the leal instruction in action. The instruction is provided
to support pointer arithmetic, but the C compiler often uses it as a way to perform multiplication by small
constants.

For each value of
�

, we can compute two multiples: �
�

(when b is 0) and �
� � �

(when b is a. Thus, we
can compute multiples 1, 2, 3, 4, 5, 8, and 9.

Problem 2.29 Solution: [Pg. 73]

We have found that people have difficulty with this exercise when working directly with assembly code. It
becomes more clear when put in the form shown in optarith.

We can see that M is 15; x*M is computed as (x<<4)-x.

We can see that N is 4; a bias value of 3 is added when y is negative, and the right shift is by 2.

Problem 2.30 Solution: [Pg. 74]

These “C puzzle” problems provide a clear demonstration that programmers must understand the properties
of computer arithmetic:

A. (x >= 0) || ((2*x) < 0).
False. Let x be � 2147483648 (

�	�����
� � ). We will then have 2*x equal to 0.

B. (x & 7) != 7 || (x<<30 < 0).
True. If (x & 7) != 7 evaluates to 0, then we must have bit � � equal to 1. When shifted left by
30, this will become the sign bit.

C. (x * x) >= 0.
False. When x is 65535 (0xFFFF), x*x is � 131071 (0xFFFE0001).

D. x < 0 || -x <= 0.
True. If x is nonnegative, then -x is nonpositive.

E. x > 0 || -x >= 0.
False. Let x be � 2147483648 (

�	�����
� � ). Then both x and -x are negative.
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F. x*y == ux*uy.
True. two’s-complement and unsigned multiplication have the same bit-level behavior.

G. ˜x*y + uy*ux == -y.
True. ˜x equals -x-1. uy*ux equals x*y. Thus, the left hand side is equivalent to -x*y-y+x*y.

Problem 2.31 Solution: [Pg. 76]

Understanding fractional binary representations is an important step to understanding floating-point encod-
ings. This exercise lets you try out some simple examples.

Fractional value Binary representation Decimal representation�
�

� ��� � � � � �
�� � ��� ��� � � � � �� ���	 ����� ����� ��� � � � �� �

� � � � � ��� � � � � � ��	 � �� �
� ����� ��� ��� � � �

� �� � � ��� � � � ���
	 � �
� 	��	 ������� � � � ������	 � �

One simple way to think about fractional binary representations is to represent a number as a fraction of the
form

�� � . We can write this in binary using the binary representation of � , with the binary point inserted
�

positions from the right. As an example, for
� ���	 , we have � � ��� � � � ����� � . We then put the binary point 4

positions from the right to get
����� ����� � .

Problem 2.32 Solution: [Pg. 77]

In most cases, the limited precision of floating-point numbers is not a major problem, because the relative
error of the computation is still fairly low. In this example, however, the system was sensitive to the absolute
error.

A. We can see that � � � � �
has binary representation:

� ��� � � � � � � � � � � � ��� ��� � ��� ��� ��� � � ��� � � � ��� � ��� � �
Comparing this to the binary representation of

���� , we can see that it is simply �
� � �

�
���� , which is

around
���
� � � � � ���

.

B.
���
� � � � � ���

�
� � �

�
	��
�

	��
�
� � � � � � � � .

C.
� � � � � � � � � � � 	 � � .

Problem 2.33 Solution: [Pg. 81]

Working through floating point representations for very small word sizes helps clarify how IEEE floating
point works. Note especially the transition between denormalized and normalized values.



2.5. SUMMARY 113

Bits � � � � �
0 00 00

� � � � �
0 00 01

� � �
�

�
�

�
�

0 00 10
� � �

�

�
�

�
�

0 00 11
� � �

�

�

�

�

�

0 01 00
� � �

�

�

�

�

�

0 01 01
� � �

�

�

�

�

�

0 01 10
� � �

�

	
�

	
�

0 01 11
� � �

�

�
�

�
�

0 10 00 � � �
�

�

�

�
�

0 10 01 � � �
�

�

�

���
�

0 10 10 � � �
�

	
�

� �
�

0 10 11 � � �

�

�
�

�
�

�

0 11 00 — — — —
���

0 11 01 — — — — � 
 �
0 11 10 — — — — � 
 �
0 11 11 — — — — � 
 �

Problem 2.34 Solution: [Pg. 83]

Hexadecimal 0x354321 is equivalent to binary
� ��� � � � � � � � � � � ��� � � � � ��� � �
�

. Shifting this right 21 places
gives

��� � � � � � � � � � � � ��� ��� � � ��� � � � � �
� �

. We form the fraction field by dropping the leading 1 and adding
2 0s, giving

� � � � � � � � � � � � ��� � � � � ��� � � ��� �
. The exponent is formed by adding bias 127 to 21, giving 148

(binary
� � � � � � � � � �

). We combine this with a sign field of 0 to give a binary representation

� � � � � � � � � � � � � � � � � ��� ��� � � � � � ��� ��� � � � � �

We see that the correlation between the two representations correspond to the low-order bits of the integer,
up to the most significant bit equal to 1 matching the high-order 21 bits of the fraction:

0 0 3 5 4 3 2 1
00000000001101010100001100100001

*********************
4 A 5 5 0 C 8 4

01001010010101010000110010000100

Problem 2.35 Solution: [Pg. 83]

This exercise helps you think about what numbers cannot be represented exactly in floating point.

The number has binary representation
�

followed by � �
’s followed by

�
, giving value � � �

�
� �

.

When � � � � , the value is �
� � � � � � 	 � ����� � � � � .

Problem 2.36 Solution: [Pg. 87]
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In general it is better to use a library macro rather than inventing your own code. This code seems to work
on a variety of machines, however.

We assume that the value 1e400 overflows to infinity.

code/data/ieee.c

1 #define POS_INFINITY 1e400
2 #define NEG_INFINITY (-POS_INFINITY)
3 #define NEG_ZERO (-1.0/POS_INFINITY)

code/data/ieee.c

Problem 2.37 Solution: [Pg. 91]

Exercises such as this one help you develop your ability to reason about floating point operations from a
programmer’s perspective. Make sure you understand each of the answers.

A. x == (int)(float) x
No. For example, when x is

�	� 

�
.

B. x == (int)(double) x
Yes, since double has greater precision and range than int.

C. f == (float)(double) f
Yes, since double has greater precision and range than float.

D. d == (float) d
No. For example, when d is 1e40, we will get

���
on the right.

E. f == -(-f)
Yes, since a floating-point number is negated by simply inverting its sign bit.

F. 2/3 == 2/3.0
No, the left-hand value will be the integer value 0, while the right-hand value will be the floating-point
approximation of

�
� .

G. (d >= 0.0) || ((d*2) < 0.0)
Yes, since multiplication is monotonic.

H. (d+f)-d == f
No, for example when d is

���
and f is

�
, the left-hand side will be � 
 � , while the right-hand side

will be
�
.



Chapter 3

Machine-Level Representation of Programs

When programming in a high-level language such as C, we are shielded from the detailed, machine-level
implementation of our program. In contrast, when writing programs in assembly code, a programmer must
specify exactly how the program manages memory and the low-level instructions the program uses to carry
out the computation. Most of the time, it is much more productive and reliable to work at the higher level
of abstraction provided by a high-level language. The type checking provided by a compiler helps detect
many program errors and makes sure we reference and manipulate data in consistent ways. With modern,
optimizing compilers, the generated code is usually at least as efficient as what a skilled, assembly-language
programmer would write by hand. Best of all, a program written in a high-level language can be compiled
and executed on a number of different machines, whereas assembly code is highly machine specific.

Even though optimizing compilers are available, being able to read and understand assembly code is an
important skill for serious programmers. By invoking the compiler with appropriate flags, the compiler will
generate a file showing its output in assembly code. Assembly code is very close to the actual machine code
that computers execute. Its main feature is that it is in a more readable textual format, compared to the binary
format of object code. By reading this assembly code, we can understand the optimization capabilities of
the compiler and analyze the underlying inefficiencies in the code. As we will experience in Chapter 5,
programmers seeking to maximize the performance of a critical section of code often try different variations
of the source code, each time compiling and examining the generated assembly code to get a sense of how
efficiently the program will run. Furthermore, there are times when the layer of abstraction provided by a
high-level language hides information about the run-time behavior of a program that we need to understand.
For example, when writing concurrent programs using a thread package, as covered in Chapter 13, it is
important to know what type of storage is used to hold the different program variables. This information
is visible at the assembly code level. The need for programmers to learn assembly code has shifted over
the years from one of being able to write programs directly in assembly to one of being able to read and
understand the code generated by optimizing compilers.

In this chapter, we will learn the details of a particular assembly language and see how C programs get
compiled into this form of machine code. Reading the assembly code generated by a compiler involves a
different set of skills than writing assembly code by hand. We must understand the transformations typical
compilers make in converting the constructs of C into machine code. Relative to the computations expressed
in the C code, optimizing compilers can rearrange execution order, eliminate unneeded computations, re-
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place slow operations such as multiplication by shifts and adds, and even change recursive computations
into iterative ones. Understanding the relation between source code and the generated assembly can of-
ten be a challenge—much like putting together a puzzle having a slightly different design than the picture
on the box. It is a form of reverse engineering—trying to understand the process by which a system was
created by studying the system and working backward. In this case, the system is a machine-generated,
assembly-language program, rather than something designed by a human. This simplifies the task of re-
verse engineering, because the generated code follows fairly regular patterns, and we can run experiments,
having the compiler generate code for many different programs. In our presentation, we give many exam-
ples and provide a number of exercises illustrating different aspects of assembly language and compilers.
This is a subject matter where mastering the details is a prerequisite to understanding the deeper and more
fundamental concepts. Spending time studying the examples and working through the exercises will be well
worthwhile.

We give a brief history of the Intel architecture. Intel processors have grown from rather primitive 16-bit
processors in 1978 to the mainstream machines for today’s desktop computers. The architecture has grown
correspondingly with new features added and the 16-bit architecture transformed to support 32-bit data and
addresses. The result is a rather peculiar design with features that make sense only when viewed from a
historical perspective. It is also laden with features providing backward compatibility that are not used by
modern compilers and operating systems. We will focus on the subset of the features used by GCC and
Linux. This allows us to avoid much of the complexity and arcane features of IA32.

Our technical presentation starts a quick tour to show the relation between C, assembly code, and object
code. We then proceed to the details of IA32, starting with the representation and manipulation of data
and the implementation of control. We see how control constructs in C, such as if, while, and switch
statements, are implemented. We then cover the implementation of procedures, including how the run-time
stack supports the passing of data and control between procedures, as well as storage for local variables.
Next, we consider how data structures such as arrays, structures, and unions are implemented at the machine
level. With this background in machine-level programming, we can examine the problems of out of bounds
memory references and the vulnerability of systems to buffer overflow attacks. We finish this part of the
presentation with some tips on using the GDB debugger for examining the run-time behavior of a machine-
level program.

We then move into material that is marked with an asterisk (*) and is intended for dedicated machine-
language enthusiasts. We give a presentation of IA32 support for floating-point code. This is a particularly
arcane feature of IA32, and so we advise that only people determined to work with floating-point code
attempt to study this section. We give a brief presentation of GCC’s support for embedding assembly code
within C programs. In some applications, the programmer must drop down to assembly code to access
low-level features of the machine. Embedded assembly is the best way to do this.

3.1 A Historical Perspective

The Intel processor line has a long, evolutionary development. It started with one of the first single-chip, 16-
bit microprocessors, where many compromises had to be made due to the limited capabilities of integrated
circuit technology at the time. Since then it has grown to take advantage of technology improvements as
well as to satisfy the demands for higher performance and for supporting more advanced operating systems.
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The list that follows shows the successive models of Intel processors, and some of their key features. We use
the number of transistors required to implement the processors as an indication of how they have evolved in
complexity (K denotes 1000, and M denotes 1,000,000).

8086: (1978, 29 K transistors). One of the first single-chip, 16-bit microprocessors. The 8088, a version
of the 8086 with an 8-bit external bus, formed the heart of the original IBM personal computers.
IBM contracted with then-tiny Microsoft to develop the MS-DOS operating system. The original
models came with 32,768 bytes of memory and two floppy drives (no hard drive). Architecturally, the
machines were limited to a 655,360-byte address space—addresses were only 20 bits long (1,048,576
bytes addressable), and the operating system reserved 393,216 bytes for its own use.

80286: (1982, 134 K transistors). Added more (and now obsolete) addressing modes. Formed the basis of
the IBM PC-AT personal computer, the original platform for MS Windows.

i386: (1985, 275 K transistors). Expanded the architecture to 32 bits. Added the flat addressing model used
by Linux and recent versions of the Windows family of operating system. This was the first machine
in the series that could support a Unix operating system.

i486: (1989, 1.9 M transistors). Improved performance and integrated the floating-point unit onto the pro-
cessor chip but did not change the instruction set.

Pentium: (1993, 3.1 M transistors). Improved performance, but only added minor extensions to the in-
struction set.

PentiumPro: (1995, 6.5 M transistors). Introduced a radically new processor design, internally known as
the P6 microarchitecture. Added a class of “conditional move” instructions to the instruction set.

Pentium/MMX: (1997, 4.5 M transistors). Added new class of instructions to the Pentium processor for
manipulating vectors of integers. Each datum can be 1, 2, or 4-bytes long. Each vector totals 64 bits.

Pentium II: (1997, 7 M transistors). Merged the previously separate PentiumPro and Pentium/MMX lines
by implementing the MMX instructions within the P6 microarchitecture.

Pentium III: (1999, 8.2 M transistors). Introduced yet another class of instructions for manipulating vec-
tors of integer or floating-point data. Each datum can be 1, 2, or 4 bytes, packed into vectors of 128
bits. Later versions of this chip went up to 24 M transistors, due to the incorporation of the level-2
cache on chip.

Pentium 4: (2001, 42 M transistors). Added 8-byte integer and floating-point formats to the vector instruc-
tions, along with 144 new instructions for these formats. Intel shifted away from Roman numerals in
their numbering convention.

Each successive processor has been designed to be backward compatible—able to run code compiled for any
earlier version. As we will see, there are many strange artifacts in the instruction set due to this evolutionary
heritage. Intel now calls its instruction set IA32, for “Intel Architecture 32-bit.” The processor line is also
referred to by the colloquial name “x86,” reflecting the processor naming conventions up through the i486.
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Aside: Why not the i586?
Intel discontinued their numeric naming convention, because they were not able to obtain trademark protection for
their CPU numbers. The U. S. Trademark office does not allow numbers to be trademarked. Instead, they coined the
name “Pentium” using the the Greek root word penta as an indication that this was their fifth-generation machine.
Since then, they have used variants of this name, even though the PentiumPro is a sixth-generation machine (hence
the internal name P6), and the Pentium 4 is a seventh-generation machine. Each new generation involves a major
change in the processor design. End Aside.

Aside: Moore’s Law.

Intel microprocessor complexity
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If we plot the number of transistors in the different IA32 processors listed above versus the year of introduction,
and use a logarithmic scale for the Y axis, we can see that the growth has been phenomenal. Fitting a line through
the data, we see that the number of transistors increases at an annual rate of approximately 33%, meaning that the
number of transistors doubles about every 30 months. This growth has been sustained over the roughly 25 year
history of IA32.

In 1965, Gordon Moore, a founder of Intel Corporation extrapolated from the chip technology of the day, in which
they could fabricate circuits with around 64 transistors on a single chip, to predict that the number of transistors per
chip would double every year for the next 10 years. This predication became known as Moore’s Law. As it turns out,
his prediction was just a little bit optimistic, but also too short-sighted. Over its 40-year history the semiconductor
industry has been able to double transistor counts on average every 18 months.

Similar exponential growth rates have occurred for other aspects of computer technology—disk capacities, memory
chip capacities, and processor performance. These remarkable growth rates have been the major driving forces of
the computer revolution. End Aside.

Over the years, several companies have produced processors that are compatible with Intel processors, ca-
pable of running the exact same machine-level programs. Chief among these is AMD. For years, AMD’s
strategy was to run just behind Intel in technology, producing processors that were less expensive although
somewhat lower in performance. More recently, AMD has produced some of the highest performing pro-
cessors for IA32. They were the first to the break the 1-gigahertz clock speed barrier for a commercially
available microprocessor. Although we will talk about Intel processors, our presentation holds just as well
for the compatible processors produced by Intel’s rivals.

Much of the complexity of IA32 is not of concern to those interested in programs for the Linux operating
system as generated by the GCC compiler. The memory model provided in the original 8086 and its exten-
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sions in the 80286 are obsolete. Instead, Linux uses what is referred to as flat addressing, where the entire
memory space is viewed by the programmer as a large array of bytes.

As we can see in the list of developments, a number of formats and instructions have been added to IA32
for manipulating vectors of small integers and floating-point numbers. These features were added to allow
improved performance on multimedia applications, such as image processing, audio and video encoding
and decoding, and three-dimensional computer graphics. Unfortunately, current versions of GCC will not
generate any code that uses these new features. In fact, in its default invocations GCC assumes it is generating
code for an i386. The compiler makes no attempt to exploit the many extensions added to what is now
considered a very old architecture.

3.2 Program Encodings

Suppose we write a C program as two files p1.c and p2.c. We would then compile this code using a Unix
command line:

unix> gcc -O2 -o p p1.c p2.c

The command gcc indicates the GNU C compiler GCC. Since this is the default compiler on Linux, we
could also invoke it as simply cc. The flag -O2 instructs the compiler to apply level-two optimizations. In
general, increasing the level of optimization makes the final program run faster, but at a risk of increased
compilation time and difficulties running debugging tools on the code. Level-two optimization is a good
compromise between optimized performance and ease of use. All code in this book was compiled with this
optimization level.

This command actually invokes a sequence of programs to turn the source code into executable code. First,
the C preprocessor expands the source code to include any files specified with #include commands and
to expand any macros. Second, the compiler generates assembly code versions of the two source files having
names p1.s and p2.s. Next, the assembler converts the assembly code into binary object code files p1.o
and p2.o. Finally, the linker merges these two object files along with code implementing standard Unix
library functions (e.g., printf) and generates the final executable file. Linking is described in more detail
in Chapter 7.

3.2.1 Machine-Level Code

The compiler does most of the work in the overall compilation sequence, transforming programs expressed
in the relatively abstract execution model provided by C into the very elementary instructions that the pro-
cessor executes. The assembly code-representation is very close to machine code. Its main feature is that it
is in a more readable textual format, as compared to the binary format of object code. Being able to under-
stand assembly code and how it relates to the original C code is a key step in understanding how computers
execute programs.

The assembly programmer’s view of the machine differs significantly from that of a C programmer. Parts
of the processor state are visible that normally are hidden from the C programmer:



120 CHAPTER 3. MACHINE-LEVEL REPRESENTATION OF PROGRAMS

� The program counter (called %eip) indicates the address in memory of the next instruction to be
executed.

� The integer register file contains eight named locations storing 32-bit values. These registers can
hold addresses (corresponding to C pointers) or integer data. Some registers are used to keep track
of critical parts of the program state, while others are used to hold temporary data, such as the local
variables of a procedure.

� The condition code registers hold status information about the most recently executed arithmetic
instruction. These are used to implement conditional changes in the control flow, such as is required
to implement if or while statements.

� The floating-point register file contains eight locations for storing floating-point data.

Whereas C provides a model in which objects of different data types can be declared and allocated in
memory, assembly code views the memory as simply a large, byte-addressable array. Aggregate data types
in C such as arrays and structures are represented in assembly code as contiguous collections of bytes. Even
for scalar data types, assembly code makes no distinctions between signed or unsigned integers, between
different types of pointers, or even between pointers and integers.

The program memory contains the object code for the program, some information required by the operating
system, a run-time stack for managing procedure calls and returns, and blocks of memory allocated by the
user, (for example, by using the malloc library procedure).

The program memory is addressed using virtual addresses. At any given time, only limited subranges
of virtual addresses are considered valid. For example, although the 32-bit addresses of IA32 potentially
span a 4-gigabyte range of address values, a typical program will only have access to a few megabytes. The
operating system manages this virtual address space, translating virtual addresses into the physical addresses
of values in the actual processor memory.

A single machine instruction performs only a very elementary operation. For example, it might add two
numbers stored in registers, transfer data between memory and a register, or conditionally branch to a new
instruction address. The compiler must generate sequences of such instructions to implement program
constructs such as arithmetic expression evaluation, loops, or procedure calls and returns.

3.2.2 Code Examples

Suppose we write a C code file code.c containing the following procedure definition:

1 int accum = 0;
2

3 int sum(int x, int y)
4 {
5 int t = x + y;
6 accum += t;
7 return t;
8 }



3.2. PROGRAM ENCODINGS 121

To see the assembly code generated by the C compiler, we can use the “-S” option on the command line:

unix> gcc -O2 -S code.c

This will cause the compiler to generate an assembly file code.s and go no further. (Normally it would
then invoke the assembler to generate an object code file).

GCC generates assembly code in its own format, known as GAS (for “Gnu ASsembler”). We will base our
presentation on this format, which differs significantly from the format used in Intel documentation and
by Microsoft compilers. See the bibiliographic notes for advice on locating documentation of the different
assembly code formats.

The assembly-code file contains various declarations including the set of lines:

sum:
pushl %ebp
movl %esp,%ebp
movl 12(%ebp),%eax
addl 8(%ebp),%eax
addl %eax,accum
movl %ebp,%esp
popl %ebp
ret

Each indented line in the above code corresponds to a single machine instruction. For example, the pushl
instruction indicates that the contents of register %ebp should be pushed onto the program stack. All
information about local variable names or data types has been stripped away. We still see a reference to the
global variable accum, since the compiler has not yet determined where in memory this variable will be
stored.

If we use the ’-c’ command line option, GCC will both compile and assemble the code:

unix> gcc -O2 -c code.c

This will generate an object code file code.o that is in binary format and hence cannot be viewed directly.
Embedded within the 852 bytes of the file code.o is a 19 byte sequence having hexadecimal representation:

55 89 e5 8b 45 0c 03 45 08 01 05 00 00 00 00 89 ec 5d c3

This is the object code corresponding to the assembly instructions listed above. A key lesson to learn from
this is that the program actually executed by the machine is simply a sequence of bytes encoding a series of
instructions. The machine has very little information about the source code from which these instructions
were generated.

Aside: How do I find the byte representation of a program?
First we used a disassembler (to be described shortly) to determine that the code for sum is 19 bytes long. Then we
ran the GNU debugging tool GDB on file code.o and gave it the command:

(gdb) x/19xb sum
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telling it to examine (abbreviated ‘x’) 19 hex-formatted (also abbreviated ‘x’) bytes (abbreviated ‘b’). You will find
that GDB has many useful features for analyzing machine-level programs, as will be discussed in Section 3.12. End
Aside.

To inspect the contents of object code files, a class of programs known as disassemblers can be invaluable.
These programs generate a format similar to assembly code from the object code. With Linux systems, the
program OBJDUMP (for “object dump”) can serve this role given the ‘-d’ command line flag:

unix> objdump -d code.o

The result is (where we have added line numbers on the left and annotations on the right):

Disassembly of function sum in file code.o

1 00000000 <sum>:
Offset Bytes Equivalent assembly language

2 0: 55 push %ebp
3 1: 89 e5 mov %esp,%ebp
4 3: 8b 45 0c mov 0xc(%ebp),%eax
5 6: 03 45 08 add 0x8(%ebp),%eax
6 9: 01 05 00 00 00 00 add %eax,0x0
7 f: 89 ec mov %ebp,%esp
8 11: 5d pop %ebp
9 12: c3 ret

10 13: 90 nop

On the left we see the 19 hexadecimal byte values listed in the byte sequence earlier, partitioned into groups
of 1 to 5 bytes each. Each of these groups is a single instruction, with the assembly language equivalent
shown on the right. Several features are worth noting:

� IA32 instructions can range in length from 1 to 15 bytes. The instruction encoding is designed so that
commonly used instructions and those with fewer operands require a smaller number of bytes than do
less common ones or ones with more operands.

� The instruction format is designed in such a way that from a given starting position, there is a unique
decoding of the bytes into machine instructions. For example, only the instruction pushl %ebp can
start with byte value 55.

� The disassembler determines the assembly code based purely on the byte sequences in the object file.
It does not require access to the source or assembly-code versions of the program.

� The disassembler uses a slightly different naming convention for the instructions than does GAS. In
our example, it has omitted the suffix ‘l’ from many of the instructions.

� Compared with the assembly code in code.s we also see an additional nop instruction at the end.
This instruction will never be executed (it comes after the procedure return instruction), nor would it
have any effect if it were (hence the name nop, short for “no operation” and commonly spoken as
“no op”). The compiler inserted this instruction as a way to pad the space used to store the procedure.
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Generating the actual executable code requires running a linker on the set of object code files, one of which
must contain a function main. Suppose in file main.c we had the following function:

1 int main()
2 {
3 return sum(1, 3);
4 }

Then, we could generate an executable program test as follows:

unix> gcc -O2 -o prog code.o main.c

The file prog has grown to 11,667 bytes, since it contains not just the code for our two procedures but also
information used to start and terminate the program as well as to interact with the operating system. We can
also disassemble the file prog:

unix> objdump -d prog

The disassembler will extract various code sequences, including the following:

Disassembly of function sum in executable file prog

1 080483b4 <sum>:
2 80483b4: 55 push %ebp
3 80483b5: 89 e5 mov %esp,%ebp
4 80483b7: 8b 45 0c mov 0xc(%ebp),%eax
5 80483ba: 03 45 08 add 0x8(%ebp),%eax
6 80483bd: 01 05 64 94 04 08 add %eax,0x8049464
7 80483c3: 89 ec mov %ebp,%esp
8 80483c5: 5d pop %ebp
9 80483c6: c3 ret

10 80483c7: 90 nop

Note that this code is almost identical to that generated by the disassembly of code.c. One main difference
is that the addresses listed along the left are different—the linker has shifted the location of this code to a
different range of addresses. A second difference is that the linker has finally determined the location for
storing global variable accum. On line 5 of the disassembly for code.o the address of accum was still
listed as 0. In the disassembly of prog, the address has been set to 0x8049464. This is shown in the
assembly code rendition of the instruction. It can also be seen in the last four bytes of the instruction, listed
from least-significant to most as 64 94 04 08.

3.2.3 A Note on Formatting

The assembly code generated by GCC is somewhat difficult to read. It contains some information with which
we need not be concerned. On the other hand, it does not provide any description of the program or how it
works. For example, suppose the file simple.c contains the following code:
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1 int simple(int *xp, int y)
2 {
3 int t = *xp + y;
4 *xp = t;
5 return t;
6 }

When GCC is run with the ‘-S’ flag, it generates the following file for simple.s.

.file "simple.c"

.version "01.01"
gcc2_compiled.:
.text

.align 4
.globl simple

.type simple,@function
simple:

pushl %ebp
movl %esp,%ebp
movl 8(%ebp),%eax
movl (%eax),%edx
addl 12(%ebp),%edx
movl %edx,(%eax)
movl %edx,%eax
movl %ebp,%esp
popl %ebp
ret

.Lfe1:
.size simple,.Lfe1-simple
.ident "GCC: (GNU) 2.95.3 20010315 (release)"

The file contains more information than we really require. All of the lines beginning with ‘.’ are directives
to guide the assembler and linker. We can generally ignore these. On the other hand, there are no explanatory
remarks about what the instructions do or how they relate to the source code.

To provide a clearer presentation of assembly code, we will show it in a form that includes line numbers and
explanatory annotations. For our example, an annotated version would appear as follows:

1 simple:
2 pushl %ebp Save frame pointer

3 movl %esp,%ebp Create new frame pointer

4 movl 8(%ebp),%eax Get xp

5 movl (%eax),%edx Retrieve *xp

6 addl 12(%ebp),%edx Add y to get t

7 movl %edx,(%eax) Store t at *xp

8 movl %edx,%eax Set t as return value

9 movl %ebp,%esp Reset stack pointer

10 popl %ebp Reset frame pointer

11 ret Return
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C declaration Intel data type GAS suffix Size (bytes)
char Byte b 1
short Word w 2
int Double word l 4
unsigned Double word l 4
long int Double word l 4
unsigned long Double word l 4
char * Double word l 4
float Single precision s 4
double Double precision l 8
long double Extended precision t 10/12

Figure 3.1: Sizes of standard data types

We typically show only the lines of code relevant to the point being discussed. Each line is numbered on the
left for reference and annotated on the right by a brief description of the effect of the instruction and how it
relates to the computations of the original C code. This is a stylized version of the way assembly-language
programmers format their code.

3.3 Data Formats

Due to its origins as a 16-bit architecture that expanded into a 32-bit one, Intel uses the term “word” to refer
to a 16-bit data type. Based on this, they refer to 32-bit quantities as “double words.” They refer to 64-bit
quantities as “quad words.” Most instructions we will encounter operate on bytes or double words.

Figure 3.1 shows the machine representations used for the primitive data types of C. Note that most of
the common data types are stored as double words. This includes both regular and long int’s, whether or
not they are signed. In addition, all pointers (shown here as char *) are stored as 4-byte double words.
Bytes are commonly used when manipulating string data. Floating-point numbers come in three different
forms: single-precision (4-byte) values, corresponding to C data type float; double-precision (8-byte)
values, corresponding to C data type double; and extended-precision (10-byte) values. GCC uses the
data type long double to refer to extended-precision floating-point values. It also stores them as 12-
byte quantities to improve memory system performance, as will be discussed later. Although the ANSI C
standard includes long double as a data type, they are implemented for most combinations of compiler
and machine using the same 8-byte format as ordinary double. The support for extended precision is
unique to the combination of GCC and IA32.

As the table indicates, every operation in GAS has a single-character suffix denoting the size of the operand.
For example, the mov (move data) instruction has three variants: movb (move byte), movw (move word),
and movl (move double word). The suffix ‘l’ is used for double words, since on many machines 32-bit
quantities are referred to as “long words,” a holdover from an era when 16-bit word sizes were standard.
Note that GAS uses the suffix ‘l’ to denote both a 4-byte integer as well as an 8-byte double-precision
floating-point number. This causes no ambiguity, since floating point involves an entirely different set of
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31 15 8 7 0

%eax %ax %ah %al

%ecx %cx %ch %cl

%edx %dx %dh %dl

%ebx %ax %bh %bl

%esi %si

%edi %di

Stack pointer%esp %sp

Frame pointer%ebp %bp

Figure 3.2: Integer registers. All eight registers can be accessed as either 16 bits (word) or 32 bits (double
word). The two low-order bytes of the first four registers can be accessed independently.

instructions and registers.

3.4 Accessing Information

An IA32 central processing unit (CPU) contains a set of eight registers storing 32-bit values. These registers
are used to store integer data as well as pointers. Figure 3.2 diagrams the eight registers. Their names all
begin with %e, but otherwise, they have peculiar names. With the original 8086, the registers were 16-bits
and each had a specific purpose. The names were chosen to reflect these different purposes. With flat
addressing, the need for specialized registers is greatly reduced. For the most part, the first six registers can
be considered general-purpose registers with no restrictions placed on their use. We said “for the most part,”
because some instructions use fixed registers as sources and/or destinations. In addition, within procedures
there are different conventions for saving and restoring the first three registers (%eax, %ecx, and %edx),
than for the next three (%ebx, %edi, and %esi). This will be discussed in Section 3.7. The final two
registers (%ebp and %esp) contain pointers to important places in the program stack. They should only be
altered according to the set of standard conventions for stack management.

As indicated in Figure 3.2, the low-order two bytes of the first four registers can be independently read or
written by the byte operation instructions. This feature was provided in the 8086 to allow backward com-
patibility to the 8008 and 8080—two 8-bit microprocessors that date back to 1974. When a byte instruction
updates one of these single-byte “register elements,” the remaining three bytes of the register do not change.
Similarly, the low-order 16 bits of each register can be read or written by word operation instructions. This
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Type Form Operand value Name
Immediate $ 1 ��� 1 ��� Immediate
Register

���
R
� ��� �

Register
Memory 1 ��� M

� 1 ��� �
Absolute

Memory (
� �
) M

�
R
� � � � �

Indirect
Memory 1 ��� ( ��� ) M

� 1 ��� � R
� ��� � �

Base + displacement
Memory (

���
,
� � ) M

�
R
� ��� � �

R
� � � � � Indexed

Memory 1 ��� ( ��� , � � ) M
� 1 ��� � R

� ��� � �
R
� �
	 � �

Indexed
Memory (,

� � , � ) M
�
R
� � � � � � � Scaled indexed

Memory 1 ��� (, � � , � ) M
� 1 ��� � R

� �
	 � � 	 � Scaled Indexed
Memory (

���
,
� � , � ) M

�
R
� ��� � �

R
� � � � � � � Scaled indexed

Memory 1 ��� ( ��� , � � , � ) M
� 1 ��� � R

� ��� � �
R
� � 	 � � 	 � Scaled indexed

Figure 3.3: Operand forms. Operands can denote immediate (constant) values, register values, or values
from memory. The scaling factor � must be either 1, 2, 4, or 8.

feature stems from IA32’s evolutionary heritage as a 16-bit microprocessor.

3.4.1 Operand Specifiers

Most instructions have one or more operands, specifying the source values to reference in performing an
operation and the destination location into which to place the result. IA32 supports a number of operand
forms (Figure 3.3). Source values can be given as constants or read from registers or memory. Results can
be stored in either registers or memory. Thus, the different operand possibilities can be classified into three
types. The first type, immediate, is for constant values. With GAS, these are written with a ‘$’ followed
by an integer using standard C notation, such as, $-577 or $0x1F. Any value that fits in a 32-bit word
can be used, although the assembler will use one or two-byte encodings when possible. The second type,
register, denotes the contents of one of the registers, either one of the eight 32-bit registers (e.g., %eax) for a
double-word operation, or one of the eight single-byte register elements (e.g., %al) for a byte operation. In
our figure, we use the notation

�
�
to denote an arbitrary register � , and indicate its value with the reference

R
� ��� �

, viewing the set of registers as an array R indexed by register identifiers.

The third type of operand is a memory reference, in which we access some memory location according to a
computed address, often called the effective address. Since we view the memory as a large array of bytes,
we use the notation M

� ��� � � � � to denote a reference to the
�
-byte value stored in memory starting at address�

. To simplify things, we will generally drop the subscript
�
.

As Figure 3.3 shows, there are many different addressing modes allowing different forms of memory ref-
erences. The most general form is shown at the bottom of the table with syntax 1 ��� ( ��� , � � , � ). Such a
reference has four components: an immediate offset 1 ��� , a base register

���
, an index register

� � , and a scale
factor � , where � must be 1, 2, 4, or 8. The effective address is then computed as 1 ��� � R

� ��� � �
R
� �
	 � � 	 �

This general form is often seen when referencing elements of arrays. The other forms are simply special
cases of this general form where some of the components are omitted. As we will see, the more complex
addressing modes are useful when referencing array and structure elements.
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Instruction Effect Description
movl � ,

� � � � Move double word
movw � ,

� � � � Move word
movb � ,

� � � � Move byte
movsbl � ,

� � �
SignExtend ��� � Move sign-extended byte

movzbl � ,
� � �

ZeroExtend ��� � Move zero-extended byte
pushl � R

�
%esp

� �
R
�
%esp

� � � ; Push
M
�
R
�
%esp

� � � �
popl

� � �
M
�
R
�
%esp

� �
; Pop

R
�
%esp

� �
R
�
%esp

� � �

Figure 3.4: Data movement instructions.

Practice Problem 3.1:

Assume the following values are stored at the indicated memory addresses and registers:

Address Value Register Value
0x100 0xFF %eax 0x100
0x104 0xAB %ecx 0x1
0x108 0x13 %edx 0x3
0x10C 0x11

Fill in the following table showing the values for the indicated operands:

Operand Value
%eax
0x104
$0x108
(%eax)
4(%eax)
9(%eax,%edx)
260(%ecx,%edx)
0xFC(,%ecx,4)
(%eax,%edx,4)

3.4.2 Data Movement Instructions

Among the most heavily used instructions are those that perform data movement. The generality of the
operand notation allows a simple move instruction to perform what in many machines would require a
number of instructions. Figure 3.4 lists the important data movement instructions. The most common is the
movl instruction for moving double words. The source operand designates a value that is immediate, stored
in a register, or stored in memory. The destination operand designates a location that is either a register or
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a memory address. IA32 imposes the restriction that a move instruction cannot have both operands refer to
memory locations. Copying a value from one memory location to another requires two instructions—the
first to load the source value into a register, and the second to write this register value to the destination.

The following movl instruction examples show the five possible combinations of source and destination
types. Recall that the source operand comes first and the destination second:

1 movl $0x4050,%eax Immediate--Register

2 movl %ebp,%esp Register--Register

3 movl (%edi,%ecx),%eax Memory--Register

4 movl $-17,(%esp) Immediate--Memory

5 movl %eax,-12(%ebp) Register--Memory

The movb instruction is similar, except that it moves just a single byte. When one of the operands is a
register, it must be one of the eight single-byte register elements illustrated in Figure 3.2. Similarly, the
movw instruction moves two bytes. When one of its operands is a register, it must be one of the eight 2-byte
register elements shown in Figure 3.2.

Both the movsbl and the movzbl instruction serve to copy a byte and to set the remaining bits in the
destination. The movsbl instruction takes a single-byte source operand, performs a sign extension to 32
bits (i.e., it sets the high-order 24 bits to the most significant bit of the source byte), and copies this to a
double-word destination. Similarly, the movzbl instruction takes a single-byte source operand, expands it
to 32 bits by adding 24 leading zeros, and copies this to a double-word destination.

Aside: Comparing byte movement instructions.
Observe that the three byte movement instructions movb, movsbl, and movzbl differ from each other in subtle
ways. Here is an example:

Assume initially that %dh = 8D, %eax = 98765432

1 movb %dh,%al %eax = 9876548D

2 movsbl %dh,%eax %eax = FFFFFF8D

3 movzbl %dh,%eax %eax = 0000008D

In these examples, all set the low-order byte of register %eax to the second byte of %edx. The movb instruction
does not change the other three bytes. The movsbl instruction sets the other three bytes to either all ones or all
zeros depending on the high-order bit of the source byte. The movzbl instruction sets the other three bytes to all
zeros in any case. End Aside.

The final two data movement operations are used to push data onto and pop data from the program stack. As
we will see, the stack plays a vital role in the handling of procedure calls. Both the pushl and the popl
instructions take a single operand—the data source for pushing and the data destination for popping. The
program stack is stored in some region of memory. As illustrated in Figure 3.5, the stack grows downward
such that the top element of the stack has the lowest address of all stack elements. (By convention, we draw
stacks upside-down, with the stack “top” shown at the bottom of the figure). The stack pointer %esp holds
the address of the top stack element. Pushing a double-word value onto the stack therefore involves first
decrementing the stack pointer by 4 and then writing the value at the new top of stack address. Therefore,
the behavior of the instruction pushl %ebp is equivalent to that of the following pair of instructions:

subl $4,%esp
movl %ebp,(%esp)
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Increasing
address

Increasing
address

•
•
•

Stack “top”

Stack “bottom”

0x108

•
•
•

Stack “top”

Stack “bottom”

•
•
•

Stack “top”

Stack “bottom”

0x108

•
•
•

Stack “top”

Stack “bottom”

0x104

•
•
•

Stack “top”

Stack “bottom”

0x108

0x123

0x123

0

0x108

%eax

%edx

%esp

0x123

0

0x108

%eax

%edx

%esp

%eax

%edx

%esp

In it ially

0x123

0

0x104

%eax

%edx

%esp

0x123

0

0x104

%eax

%edx

%esp

%eax

%edx

%esp

pushl %eax

0x123

0x123

0x108

%eax

%edx

%esp

0x123

0x123

0x108

%eax

%edx

%esp

%eax

%edx

%esp

popl %edx

0x123
0x108

Figure 3.5: Illustration of stack operation. By convention, we draw stacks upside-down, so that the
“top” of the stack is shown at the bottom. IA32 stacks grow toward lower addresses, so pushing involves
decrementing the stack pointer (register %esp) and storing to memory, while popping involves reading from
memory and incrementing the stack pointer.

except that the pushl instruction is encoded in the object code as a single byte, whereas the pair of in-
struction shown above requires a total of 6 bytes. The first two columns in our figure illustrate the effect of
executing the instruction pushl %eax when %esp is 0x108 and %eax is 0x123. First %esp would be
decremented by 4, giving 0x104, and then 0x123 would be stored at memory address 0x104.

Popping a double word involves reading from the top of stack location and then incrementing the stack
pointer by 4. Therefore, the instruction popl %eax is equivalent to the following pair of instructions:

movl (%esp),%eax
addl $4,%esp

The third column of Figure 3.5 illustrates the effect of executing the instruction popl %edx immediately
after executing the pushl. Value 0x123 would be read from memory and written to register %edx.
Register %esp would be incremented back to 0x108. As shown in the figure, the value 0x123 would
remain at memory location 0x104 until it is overwritten by another push operation. However, the stack top
is always considered to be the address indicated by %esp.

Since the stack is contained in the same memory as the program code and other forms of program data,
programs can access arbitrary positions within the stack using the standard memory addressing meth-
ods. For example, assuming the topmost element of the stack is a double word, the instruction movl
4(%esp),%edxwill copy the second double word from the stack to register %edx.
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code/asm/exchange.c

1 int exchange(int *xp, int y)
2 {
3 int x = *xp;
4

5 *xp = y;
6 return x;
7 }

code/asm/exchange.c

1 movl 8(%ebp),%eax Get xp

2 movl 12(%ebp),%edx Get y

3 movl (%eax),%ecx Get x at *xp

4 movl %edx,(%eax) Store y at *xp

5 movl %ecx,%eax Set x as return value

(a) C code (b) Assembly code

Figure 3.6: C and assembly code for exchange routine body. The stack set-up and completion portions
have been omitted.

3.4.3 Data Movement Example

New to C?: Some examples of pointers.
Function exchange (Figure 3.6) provides a good illustration of the use of pointers in C. Argument xp is a pointer
to an integer, while y is an integer itself. The statement

int x = *xp;

indicates that we should read the value stored in the location designated by xp and store it as a local variable named
x. This read operation is known as pointer dereferencing. The C operator * performs pointer dereferencing.

The statement

*xp = y;

does the reverse—it writes the value of parameter y at the location designated by xp. This also a form of pointer
dereferencing (and hence the operator *), but it indicates a write operation since it is on the left hand side of the
assignment statement.

The following is an example of exchange in action:

int a = 4;
int b = exchange(&a, 3);
printf("a = %d, b = %d\n", a, b);

This code will print

a = 3, b = 4

The C operator & (called the “address of” operator) creates a pointer, in this case to the location holding local
variable a. Function exchange then overwrote the value stored in a with 3 but returned 4 as the function value.
Observe how by passing a pointer to exchange, it could modify data held at some remote location. End.
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As an example of code that uses data movement instructions, consider the data exchange routine shown in
Figure 3.6, both as C code and as assembly code generated by GCC. We omit the portion of the assembly
code that allocates space on the run-time stack on procedure entry and deallocates it prior to return. The
details of this set-up and completion code will be covered when we discuss procedure linkage. The code we
are left with is called the “body.”

When the body of the procedure starts execution, procedure parameters xp and y are stored at offsets 8 and
12 relative to the address in register %ebp. Instructions 1 and 2 then move these parameters into registers
%eax and %edx. Instruction 3 dereferences xp and stores the value in register %ecx, corresponding to
program value x. Instruction 4 stores y at xp. Instruction 5 moves x to register %eax. By convention,
any function returning an integer or pointer value does so by placing the result in register %eax, and so this
instruction implements line 6 of the C code. This example illustrates how the movl instruction can be used
to read from memory to a register (instructions 1 to 3), to write from a register to memory (instruction 4),
and to copy from one register to another (instruction 5).

Two features about this assembly code are worth noting. First, we see that what we call “pointers” in C
are simply addresses. Dereferencing a pointer involves putting that pointer in a register, and then using this
register in an indirect memory reference. Second, local variables such as x are often kept in registers rather
than stored in memory locations. Register access is much faster than memory access.

Practice Problem 3.2:

You are given the following information. A function with prototype

void decode1(int *xp, int *yp, int *zp);

is compiled into assembly code. The body of the code is as follows:

1 movl 8(%ebp),%edi
2 movl 12(%ebp),%ebx
3 movl 16(%ebp),%esi
4 movl (%edi),%eax
5 movl (%ebx),%edx
6 movl (%esi),%ecx
7 movl %eax,(%ebx)
8 movl %edx,(%esi)
9 movl %ecx,(%edi)

Parameters xp, yp, and zp are stored at memory locations with offsets 8, 12, and 16, respectively,
relative to the address in register %ebp.

Write C code for decode1 that will have an effect equivalent to the assembly code above. You can
test your answer by compiling your code with the -S switch. Your compiler may generate code that
differs in the usage of registers or the ordering of memory references, but it should still be functionally
equivalent.
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Instruction Effect Description
leal � ,

� � �
& � Load effective address

incl
� � � �

+ 1 Increment
decl

� � � �
- 1 Decrement

negl
� � �

-
�

Negate
notl

� � �
˜

�
Complement

addl � ,
� � � �

+ � Add
subl � ,

� � � �
- � Subtract

imull � ,
� � � �

* � Multiply
xorl � ,

� � � �
ˆ � Exclusive-or

orl � ,
� � � �

| � Or
andl � ,

� � � �
& � And

sall
�

,
� � � �

<<
�

Left shift
shll

�
,

� � � �
<<

�
Left shift (same as sall)

sarl
�

,
� � � �

>>
�

Arithmetic right shift
shrl

�
,

� � � �
>>

�
Logical right shift

Figure 3.7: Integer arithmetic operations. The load effective address (leal) instruction is commonly
used to perform simple arithmetic. The remaining ones are more standard unary or binary operations.
Note the nonintuitive ordering of the operands with GAS.

3.5 Arithmetic and Logical Operations

Figure 3.7 lists some of the double-word integer operations, divided into four groups. Binary operations
have two operands, while unary operations have one operand. These operands are specified using the same
notation as described in Section 3.4. With the exception of leal, each of these instructions has a counterpart
that operates on words (16 bits) and on bytes. The suffix ‘l’ is replaced by ‘w’ for word operations and ‘b’
for the byte operations. For example, addl becomes addw or addb.

3.5.1 Load Effective Address

The Load Effective Address leal instruction is actually a variant of the movl instruction. It has the
form of an instruction that reads from memory to a register, but it does not reference memory at all. Its
first operand appears to be a memory reference, but instead of reading from the designated location, the
instruction copies the effective address to the destination. We indicate this computation in Figure 3.7 using
the C address operator & � . This instruction can be used to generate pointers for later memory references.
In addition, it can be used to compactly describe common arithmetic operations. For example, if register
%edx contains value � , then the instruction leal 7(%edx,%edx,4), %eax will set register %eax to� � � � . The destination operand must be a register.

Practice Problem 3.3:

Suppose register %eax holds value � and %ecx holds value � . Fill in the table below with formu-
las indicating the value that will be stored in register %edx for each of the following assembly code
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instructions.

Expression Result
leal 6(%eax), %edx
leal (%eax,%ecx), %edx
leal (%eax,%ecx,4), %edx
leal 7(%eax,%eax,8), %edx
leal 0xA(,$ecx,4), %edx
leal 9(%eax,%ecx,2), %edx

3.5.2 Unary and Binary Operations

Operations in the second group are unary operations, with the single operand serving as both source and
destination. This operand can be either a register or a memory location. For example, the instruction incl
(%esp) causes the element on the top of the stack to be incremented. This syntax is reminiscent of the C
increment (++) and decrement operators (--).

The third group consists of binary operations, where the second operand is used as both a source and a
destination. This syntax is reminiscent of the C assignment operators such as +=. Observe, however,
that the source operand is given first and the destination second. This looks peculiar for noncommutative
operations. For example, the instruction subl %eax,%edx decrements register %edx by the value in
%eax. The first operand can be either an immediate value, a register, or a memory location. The second can
be either a register or a memory location. As with the movl instruction, however, the two operands cannot
both be memory locations.

Practice Problem 3.4:

Assume the following values are stored at the indicated memory addresses and registers:

Address Value Register Value
0x100 0xFF %eax 0x100
0x104 0xAB %ecx 0x1
0x108 0x13 %edx 0x3
0x10C 0x11

Fill in the following table showing the effects of the following instructions, both in terms of the register
or memory location that will be updated and the resulting value.

Instruction Destination Value
addl %ecx,(%eax)
subl %edx,4(%eax)
imull $16,(%eax,%edx,4)
incl 8(%eax)
decl %ecx
subl %edx,%eax
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3.5.3 Shift Operations

The final group consists of shift operations, where the shift amount is given first, and the value to shift
is given second. Both arithmetic and logical right shifts are possible. The shift amount is encoded as a
single byte, since only shifts amounts between 0 and 31 are allowed. The shift amount is given either as an
immediate or in the single-byte register element %cl. As Figure 3.7 indicates, there are two names for the
left shift instruction: sall and shll. Both have the same effect, filling from the right with 0s. The right
shift instructions differ in that sarl performs an arithmetic shift (fill with copies of the sign bit), whereas
shrl performs a logical shift (fill with 0s).

Practice Problem 3.5:

Suppose we want to generate assembly code for the following C function:

int shift_left2_rightn(int x, int n)
{

x <<= 2;
x >>= n;
return x;

}

The code that follows is a portion of the assembly code that performs the actual shifts and leaves the
final value in register %eax. Two key instructions have been omitted. Parameters x and n are stored at
memory locations with offsets 8 and 12, respectively, relative to the address in register %ebp.

1 movl 12(%ebp),%ecx Get n

2 movl 8(%ebp),%eax Get x

3 _____________ x <<= 2

4 _____________ x >>= n

Fill in the missing instructions, following the annotations on the right. The right shift should be per-
formed arithmetically.

3.5.4 Discussion

With the exception of the right shift operations, none of the instructions distinguish between signed and
unsigned operands. Two’s complement arithmetic has the same bit-level behavior as unsigned arithmetic
for all of the instructions listed.

Figure 3.8 shows an example of a function that performs arithmetic operations and its translation into as-
sembly. As before, we have omitted the stack set-up and completion portions. Function arguments x, y,
and z are stored in memory at offsets 8, 12, and 16 relative to the address in register %ebp, respectively.

Instruction 3 implements the expression x+y, getting one operand y from register %eax (which was fetched
by instruction 1) and the other directly from memory. Instructions 4 and 5 perform the computation z*48,
first using the leal instruction with a scaled-indexed addressing mode operand to compute � � � � � � � � � ,
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code/asm/arith.c

1 int arith(int x,
2 int y,
3 int z)
4 {
5 int t1 = x+y;
6 int t2 = z*48;
7 int t3 = t1 & 0xFFFF;
8 int t4 = t2 * t3;
9

10 return t4;
11 }

code/asm/arith.c

1 movl 12(%ebp),%eax Get y

2 movl 16(%ebp),%edx Get z

3 addl 8(%ebp),%eax Compute t1 = x+y

4 leal (%edx,%edx,2),%edx Compute z*3

5 sall $4,%edx Compute t2 = z*48

6 andl $65535,%eax Compute t3 = t1&0xFFFF

7 imull %eax,%edx Compute t4 = t2*t3

8 movl %edx,%eax Set t4 as return val

(a) C code (b) Assembly code

Figure 3.8: C and assembly code for arithmetic routine body. The stack set-up and completion portions
have been omitted.

and then shifting this value left 4 bits to compute �
� � � � � ��� � . The C compiler often generates combinations

of add and shift instructions to perform multiplications by constant factors, as was discussed in Section 2.3.6
(page 71). Instruction 6 performs the AND operation and instruction 7 performs the final multiplication.
Then instruction 8 moves the return value into register %eax.

In the assembly code of Figure 3.8, the sequence of values in register %eax correspond to program values
y, t1, t3, and t4 (as the return value). In general, compilers generate code that uses individual registers
for multiple program values and that move program values among the registers.

Practice Problem 3.6:

In the compilation of the loop

for (i = 0; i < n; i++)
v += i;

we find the following assembly code line:

xorl %edx,%edx

Explain why this instruction would be there, even though there are no EXCLUSIVE-OR operators in our
C code. What operation in the C program does this instruction implement?

3.5.5 Special Arithmetic Operations

Figure 3.9 describes instructions that support generating the full 64-bit product of two 32-bit numbers, as
well as integer division.
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Instruction Effect Description
imull � R

�
%edx

�
:R

�
%eax

� � � � R
�
%eax

�
Signed full multiply

mull � R
�
%edx

�
:R

�
%eax

� � � � R
�
%eax

�
Unsigned full multiply

cltd R
�
%edx

�
:R

�
%eax

� �
SignExtend � R �

%eax
� � Convert to quad word

idivl � R
�
%edx

� �
R
�
%edx

�
:R

�
%eax

� ����� � ; Signed divide
R
�
%eax

� �
R
�
%edx

�
:R

�
%eax

� � �
divl � R

�
%edx

� �
R
�
%edx

�
:R

�
%eax

� ����� � ; Unsigned divide
R
�
%eax

� �
R
�
%edx

�
:R

�
%eax

� � �

Figure 3.9: Special arithmetic operations. These operations provide full 64-bit multiplication and division,
for both signed and unsigned numbers. The pair of registers %edx and %eax are viewed as forming a single
64-bit quad word.

The imull instruction listed in Figure 3.7 is known as the “two-operand” multiply instruction. It generates
a 32-bit product from two 32-bit operands, implementing the operations *u� � and *t� � described in Sec-
tions 2.3.4 and 2.3.5. Recall that when truncating the product to 32 bits, both unsigned multiply and two’s
complement multiply have the same bit-level behavior. IA32 also provides two different “one-operand”
multiply instructions to compute the full 64-bit product of two 32-bit values—one for unsigned ( mull),
and one for two’s complement ( imull) multiplication. For both of these, one argument must be in register
%eax, and the other is given as the instruction source operand. The product is then stored in registers %edx
(high-order 32 bits) and %eax (low-order 32 bits). Note that although the name imull is used for two
distinct multiplication operations, the assembler can tell which one is intended by counting the number of
operands.

As an example, suppose we have signed numbers x and y stored at positions � and
� � relative to %ebp, and

we want to store their full 64-bit product as 8 bytes on top of the stack. The code would proceed as follows:

x at %ebp+8, y at %ebp+12

1 movl 8(%ebp),%eax Put x in %eax

2 imull 12(%ebp) Multiply by y

3 pushl %edx Push high-order 32 bits

4 pushl %eax Push low-order 32 bits

Observe that the order in which we push the two registers is correct for a little-endian machine in which the
stack grows toward lower addresses, (i.e., the low-order bytes of the product will have lower addresses than
the high-order bytes).

Our earlier table of arithmetic operations (Figure 3.7) does not list any division or modulus operations. These
operations are provided by the single-operand divide instructions similar to the single-operand multiply
instructions. The signed division instruction idivl takes as dividend the 64-bit quantity in registers %edx
(high-order 32 bits) and %eax (low-order 32 bits). The divisor is given as the instruction operand. The
instructions store the quotient in register %eax and the remainder in register %edx. The cltd1 instruction
can be used to form the 64-bit dividend from a 32-bit value stored in register %eax. This instruction sign
extends %eax into %edx.

1This instruction is called cdq in the Intel documentation, one of the few cases where the GAS name for an instruction bears no
relation to the Intel name.



138 CHAPTER 3. MACHINE-LEVEL REPRESENTATION OF PROGRAMS

As an example, suppose we have signed numbers x and y stored in positions � and
� � relative to %ebp, and

we want to store values x/y and x%y on the stack. The code would proceed as follows:

x at %ebp+8, y at %ebp+12

1 movl 8(%ebp),%eax Put x in %eax

2 cltd Sign extend into %edx

3 idivl 12(%ebp) Divide by y

4 pushl %eax Push x / y

5 pushl %edx Push x % y

The divlinstruction performs unsigned division. Typically register %edx is set to 0 beforehand.

3.6 Control

Up to this point, we have considered ways to access and operate on data. Another important part of program
execution is to control the sequence of operations that are performed. The default for statements in C as
well as for assembly code is to have control flow sequentially, with statements or instructions executed in
the order they appear in the program. Some constructs in C, such as conditionals, loops, and switches, allow
the control to flow in nonsequential order, with the exact sequence depending on the values of program data.

Assembly code provides lower-level mechanisms for implementing nonsequential control flow. The basic
operation is to jump to a different part of the program, possibly contingent on the result of some test. The
compiler must generate instruction sequences that build upon these low-level mechanisms to implement the
control constructs of C.

In our presentation, we first cover the machine-level mechanisms and then show how the different control
constructs of C are implemented with them.

3.6.1 Condition Codes

In addition to the integer registers, the CPU maintains a set of single-bit condition code registers describing
attributes of the most recent arithmetic or logical operation. These registers can then be tested to perform
conditional branches. The most useful condition codes are:

CF: Carry Flag. The most recent operation generated a carry out of the most significant bit. Used to detect
overflow for unsigned operations.

ZF: Zero Flag. The most recent operation yielded zero.

SF: Sign Flag. The most recent operation yielded a negative value.

OF: Overflow Flag. The most recent operation caused a two’s complement overflow—either negative or
positive.

For example, suppose we used the addl instruction to perform the equivalent of the C expression t=a+b,
where variables a, b, and t are of type int. Then the condition codes would be set according to the
following C expressions:
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CF: (unsigned t) < (unsigned a) Unsigned overflow
ZF: (t == 0) Zero
SF: (t < 0) Negative
OF: (a < 0 == b < 0) && (t < 0 != a < 0) Signed overflow

The leal instruction does not alter any condition codes, since it is intended to be used in address compu-
tations. Otherwise, all of the instructions listed in Figure 3.7 cause the condition codes to be set. For the
logical operations, such as xorl, the carry and overflow flags are set to 0. For the shift operations, the carry
flag is set to the last bit shifted out, while the overflow flag is set to 0.

In addition to the operations of Figure 3.7, the following table shows two operations (having 8, 16, and
32-bit forms) that set conditions codes without altering any other registers:

Instruction Based on Description
cmpb � � , � � � � - � � Compare bytes
testb � � , � � � � & � � Test byte
cmpw � � , � � � � - � � Compare words
testw � � , � � � � & � � Test word
cmpl � � , � � � � - � � Compare double words
testl � � , � � � � & � � Test double word

The cmpb, cmpw, and cmpl instructions set the condition codes according to the difference of their two
operands. With GAS format, the operands are listed in reverse order, making the code difficult to read. These
instructions set the zero flag if the two operands are equal. The other flags can be used to determine ordering
relations between the two operands.

The testb, testw, and testl instructions set the zero and negative flags based on the AND of their
two operands. Typically, the same operand is repeated (e.g., testl %eax,%eax to see whether %eax is
negative, zero, or positive), or one of the operands is a mask indicating which bits should be tested.

3.6.2 Accessing the Condition Codes

Rather than reading the condition codes directly, the two most common methods of accessing them are to
set an integer register or to perform a conditional branch based on some combination of condition codes.
The different set instructions described in Figure 3.10 set a single byte to 0 or to 1 depending on some
combination of the conditions codes. The destination operand is either one of the eight single-byte register
elements (Figure 3.2) or a memory location where the single byte is to be stored. To generate a 32-bit result,
we must also clear the high-order 24 bits. A typical instruction sequence for a C predicate (such as a < b)
is therefore as follows:

Note: a is in %edx, b is in %eax

1 cmpl %eax,%edx Compare a:b

2 setl %al Set low order byte of %eax to 0 or 1

3 movzbl %al,%eax Set remaining bytes of %eax to 0

The movzbl instruction is used to clear the high-order three bytes.

For some of the underlying machine instructions, there are multiple possible names, which we list as “syn-
onyms.” For example both “setg” (for “SET-Greater”) and “setnle” (for “SET-Not-Less-or-Equal”)
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Instruction Synonym Effect Set condition
sete

�
setz

� �
ZF Equal / zero

setne
�

setnz
� �

˜ ZF Not equal / not zero
sets

� � �
SF Negative

setns
� � �

˜ SF Nonnegative
setg

�
setnle

� �
˜ � SF ˆ OF � & ˜ZF Greater (signed >)

setge
�

setnl
� �

˜ � SF ˆ OF � Greater or equal (signed >=)
setl

�
setnge

� �
SF ˆ OF Less (signed <)

setle
�

setng
� � � SF ˆ OF � | ZF Less or equal (signed <=)

seta
�

setnbe
� �

˜ CF & ˜ZF Above (unsigned >)
setae

�
setnb

� �
˜ CF Above or equal (unsigned >=)

setb
�

setnae
� �

CF Below (unsigned <)
setbe

�
setna

� �
CF & ˜ZF Below or equal (unsigned <=)

Figure 3.10: The set instructions. Each instruction sets a single byte to 0 or 1 based on some combina-
tion of the condition codes. Some instructions have “synonyms,” i.e., alternate names for the same machine
instruction.

refer to the same machine instruction. Compilers and disassemblers make arbitrary choices of which names
to use.

Although all arithmetic operations set the condition codes, the descriptions of the different set commands
apply to the case where a comparison instruction has been executed, setting the condition codes according
to the computation t = a - b. For example, consider the sete, or “Set when equal” instruction. When
a � b, we will have t � �

, and hence the zero flag indicates equality.

Similarly, consider testing a signed comparison with the setl, or “Set when less,” instruction. When a
and b are in two’s complement form, then for a �

b we will have a � b
� �

if the true difference were
computed. When there is no overflow, this would be indicated by having the sign flag set. When there is
positive overflow, because a � b is a large positive number, however, we will have t � �

. When there
is negative overflow, because a � b is a small negative number, we will have t �

�
. In either case, the

sign flag will indicate the opposite of the sign of the true difference. Hence, the EXCLUSIVE-OR of the
overflow and sign bits provides a test for whether a �

b. The other signed comparison tests are based on
other combinations of SF ˆ OF and ZF.

For the testing of unsigned comparisons, the carry flag will be set by the cmpl instruction when the integer
difference a � b of the unsigned arguments a and b would be negative, that is, when (unsigned) a <
(unsigned) b. Thus, these tests use combinations of the carry and zero flags.

Practice Problem 3.7:

In the following C code, we have replaced some of the comparison operators with “__” and omitted the
data types in the casts.

1 char ctest(int a, int b, int c)
2 {
3 char t1 = a __ b;



3.6. CONTROL 141

4 char t2 = b __ ( ) a;
5 char t3 = ( ) c __ ( ) a;
6 char t4 = ( ) a __ ( ) c;
7 char t5 = c __ b;
8 char t6 = a __ 0;
9 return t1 + t2 + t3 + t4 + t5 + t6;

10 }

For the original C code, GCC generates the following assembly code

1 movl 8(%ebp),%ecx Get a

2 movl 12(%ebp),%esi Get b

3 cmpl %esi,%ecx Compare a:b

4 setl %al Compute t1

5 cmpl %ecx,%esi Compare b:a

6 setb -1(%ebp) Compute t2

7 cmpw %cx,16(%ebp) Compare c:a

8 setge -2(%ebp) Compute t3

9 movb %cl,%dl
10 cmpb 16(%ebp),%dl Compare a:c

11 setne %bl Compute t4

12 cmpl %esi,16(%ebp) Compare c:b

13 setg -3(%ebp) Compute t5

14 testl %ecx,%ecx Test a

15 setg %dl Compute t6

16 addb -1(%ebp),%al Add t2 to t1

17 addb -2(%ebp),%al Add t3 to t1

18 addb %bl,%al Add t4 to t1

19 addb -3(%ebp),%al Add t5 to t1

20 addb %dl,%al Add t6 to t1

21 movsbl %al,%eax Convert sum from char to int

Based on this assembly code, fill in the missing parts (the comparisons and the casts) in the C code.

3.6.3 Jump Instructions and their Encodings

Under normal execution, instructions follow each other in the order they are listed. A jump instruction can
cause the execution to switch to a completely new position in the program. These jump destinations are
generally indicated by a label. Consider the following assembly code sequence:

1 xorl %eax,%eax Set %eax to 0

2 jmp .L1 Goto .L1

3 movl (%eax),%edx Null pointer dereference

4 .L1:
5 popl %edx

The instruction jmp .L1 will cause the program to skip over the movl instruction and instead resume exe-
cution with the popl instruction. In generating the object code file, the assembler determines the addresses
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Instruction Synonym Jump condition Description
jmp Label 1 Direct jump
jmp *Operand 1 Indirect jump
je Label jz ZF Equal / zero
jne Label jnz ˜ZF Not equal / not zero
js Label SF Negative
jns Label ˜SF Nonnegative
jg Label jnle ˜ � SF ˆ OF � & ˜ZF Greater (signed >)
jge Label jnl ˜ � SF ˆ OF � Greater or equal (signed >=)
jl Label jnge SF ˆ OF Less (signed <)
jle Label jng � SF ˆ OF � | ZF Less or equal (signed <=)
ja Label jnbe ˜CF & ˜ZF Above (unsigned >)
jae Label jnb ˜CF Above or equal (Unsigned >=)
jb Label jnae CF Below (unsigned <)
jbe Label jna CF & ˜ZF below or equal (unsigned <=)

Figure 3.11: The jump instructions. These instructions jump to a labeled destination when the jump
condition holds. Some instructions have “synonyms,” alternate names for the same machine instruction.

of all labeled instructions and encodes the jump targets(the addresses of the destination instructions) as part
of the jump instructions.

The jmp instruction jumps unconditionally. It can be either a direct jump, where the jump target is encoded
as part of the instruction, or an indirect jump, where the jump target is read from a register or a memory
location. Direct jumps are written in assembly by giving a label as the jump target, e.g., the label “.L1” in
the code above. Indirect jumps are written using ‘*’ followed by an operand specifier using the same syntax
as used for the movl instruction. As examples, the instruction

jmp *%eax

uses the value in register %eax as the jump target, and the instruction

jmp *(%eax)

reads the jump target from memory, using the value in %eax as the read address.

The other jump instructions either jump or continue executing at the next instruction in the code sequence
depending on some combination of the condition codes. Note that the names of these instructions and the
conditions under which they jump match those of the set instructions. As with the set instructions, some
of the underlying machine instructions have multiple names. Conditional jumps can only be direct.

Although we will not concern ourselves with the detailed format of object code, understanding how the
targets of jump instructions are encoded will become important when we study linking in Chapter 7. In
addition, it helps when interpreting the output of a disassembler. In assembly code, jump targets are written
using symbolic labels. The assembler, and later the linker, generate the proper encodings of the jump targets.
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There are several different encodings for jumps, but some of the most commonly used ones are PC-relative.
That is, they encode the difference between the address of the target instruction and the address of the
instruction immediately following the jump. These offsets can be encoded using one, two, or four bytes. A
second encoding method is to give an “absolute” address, using four bytes to directly specify the target. The
assembler and linker select the appropriate encodings of the jump destinations.

As an example of PC-relative addressing, the following fragment of assembly code was generated by com-
piling a file silly.c. It contains two jumps: the jle instruction on line 1 jumps forward to a higher
address, while the jg instruction on line 8 jumps back to a lower one.

1 jle .L4 If <, goto dest2

2 .p2align 4,,7 Aligns next instruction to multiple of 8

3 .L5: dest1:

4 movl %edx,%eax
5 sarl $1,%eax
6 subl %eax,%edx
7 testl %edx,%edx
8 jg .L5 If >, goto dest1

9 .L4: dest2:

10 movl %edx,%eax

Note that line 2 is a directive to the assembler that causes the address of the following instruction to begin on
a multiple of 16, but leaving a maximum of 7 wasted bytes. This directive is intended to allow the processor
to make optimal use of the instruction cache memory.

The disassembled version of the “.o” format generated by the assembler is as follows:

1 8: 7e 11 jle 1b <silly+0x1b> Target = dest2

2 a: 8d b6 00 00 00 00 lea 0x0(%esi),%esi Added nops

3 10: 89 d0 mov %edx,%eax dest1:

4 12: c1 f8 01 sar $0x1,%eax
5 15: 29 c2 sub %eax,%edx
6 17: 85 d2 test %edx,%edx
7 19: 7f f5 jg 10 <silly+0x10> Target = dest1

8 1b: 89 d0 mov %edx,%eax dest2:

The “lea 0x0(%esi),%esi” instruction in line 2 has no real effect. It serves as a 6-byte nop so that
the next instruction (line 3) has a starting address that is a multiple of 16.

In the annotations generated by the disassembler on the right, the jump targets are indicated explicitly as
0x1b for instruction 1 and 0x10 for instruction 7. Looking at the byte encodings of the instructions,
however, we see that the target of jump instruction 1 is encoded (in the second byte) as 0x11 (decimal 17).
Adding this to 0xa (decimal 10), the address of the following instruction, we get jump target address 0x1b
(decimal 27), the address of instruction 8.

Similarly, the target of jump instruction 7 is encoded as 0xf5 (decimal �
���

) using a single-byte, two’s
complement representation. Adding this to 0x1b (decimal 27), the address of instruction 8, we get 0x10
(decimal 16), the address of instruction 3.

As these examples illustrate, the value of the program counter when performing PC-relative addressing is
the address of the instruction following the jump, not that of the jump itself. This convention dates back to
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early implementations, when the processor would update the program counter as its first step in executing
an instruction.

The following shows the disassembled version of the program after linking:

1 80483c8: 7e 11 jle 80483db <silly+0x1b>
2 80483ca: 8d b6 00 00 00 00 lea 0x0(%esi),%esi
3 80483d0: 89 d0 mov %edx,%eax
4 80483d2: c1 f8 01 sar $0x1,%eax
5 80483d5: 29 c2 sub %eax,%edx
6 80483d7: 85 d2 test %edx,%edx
7 80483d9: 7f f5 jg 80483d0 <silly+0x10>
8 80483db: 89 d0 mov %edx,%eax

The instructions have been relocated to different addresses, but the encodings of the jump targets in lines
1 and 7 remain unchanged. By using a PC-relative encoding of the jump targets, the instructions can be
compactly encoded (requiring just two bytes), and the object code can be shifted to different positions in
memory without alteration.

Practice Problem 3.8:

In the following excerpts from a disassembled binary, some of the information has been replaced by X’s.
Answer the following questions about these instructions.

A. What is the target of the jbe instruction below?

8048d1c: 76 da jbe XXXXXXX
8048d1e: eb 24 jmp 8048d44

B. What is the address of the mov instruction?

XXXXXXX: eb 54 jmp 8048d44
XXXXXXX: c7 45 f8 10 00 mov $0x10,0xfffffff8(%ebp)

C. In the code that follows, the jump target is encoded in PC-relative form as a 4-byte, two’s comple-
ment number. The bytes are listed from least significant to most, reflecting the little-endian byte
ordering of IA32. What is the address of the jump target?

8048902: e9 cb 00 00 00 jmp XXXXXXX
8048907: 90 nop

D. Explain the relation between the annotation on the right and the byte coding on the left. Both lines
are part of the encoding of the jmp instruction.

80483f0: ff 25 e0 a2 04 jmp *0x804a2e0
80483f5: 08

To implement the control constructs of C, the compiler must use the different types of jump instructions we
have just seen. We will go through the most common constructs, starting from simple conditional branches,
and then considering loops and switch statements.
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code/asm/abs.c

1 int absdiff(int x, int y)
2 {
3 if (x < y)
4 return y - x;
5 else
6 return x - y;
7 }

code/asm/abs.c

code/asm/abs.c

1 int gotodiff(int x, int y)
2 {
3 int rval;
4

5 if (x < y)
6 goto less;
7 rval = x - y;
8 goto done;
9 less:

10 rval = y - x;
11 done:
12 return rval;
13 }

code/asm/abs.c

(a) Original C code. (b) Equivalent goto version of (a).

1 movl 8(%ebp),%edx Get x

2 movl 12(%ebp),%eax Get y

3 cmpl %eax,%edx Compare x:y

4 jl .L3 If <, goto less

5 subl %eax,%edx Compute x-y

6 movl %edx,%eax Set as return value

7 jmp .L5 Goto done

8 .L3: less:

9 subl %edx,%eax Compute y-x as return value

10 .L5: done: Begin completion code

(c) Generated assembly code.

Figure 3.12: Compilation of conditional statements. C procedure absdiff (a) contains an if-else state-
ment. The generated assembly code is shown (c), along with a C procedure gotodiff (b) that mimics the
control flow of the assembly code. The stack set-up and completion portions of the assembly code have
been omitted
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3.6.4 Translating Conditional Branches

Conditional statements in C are implemented using combinations of conditional and unconditional jumps.
For example, Figure 3.12 shows the C code for a function that computes the absolute value of the difference
of two numbers (a). GCC generates the assembly code shown as (c). We have created a version in C,
called gotodiff (b), that more closely follows the control flow of this assembly code. It uses the goto
statement in C, which is similar to the unconditional jump of assembly code. The statement goto less
on line 6 causes a jump to the label less on line 9, skipping the statement on line 7. Note that using goto
statements is generally considered a bad programming style, since their use can make code very difficult to
read and debug. We use them in our presentation as a way to construct C programs that describe the control
flow of assembly-code programs. We call such C programs “goto code.”

The assembly code implementation first compares the two operands (line 3), setting the condition codes. If
the comparison result indicates that x is less than y, it then jumps to a block of code that computes y-x
(line 9). Otherwise it continues with the execution of code that computes x-y (lines 5 and 6). In both cases
the computed result is stored in register %eax, and ends up at line 10, at which point it executes the stack
completion code (not shown).

The general form of an if-else statement in C is given by the template

if (test-expr)
then-statement

else
else-statement

where test-expr is an integer expression that evaluates either to 0 (interpreted as meaning “false”) or to a
nonzero value (interpreted as meaning “true”). Only one of the two branch statements (then-statement or
else-statement) is executed.

For this general form, the assembly implementation typically adheres to the following form, where we use
C syntax to describe the control flow:

t = test-expr;
if (t)
goto true;

else-statement
goto done;

true:
then-statement

done:

That is, the compiler generates separate blocks of code for then-statement and else-statement. It inserts
conditional and unconditional branches to make sure the correct block is executed.

Practice Problem 3.9:
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When given the C code

code/asm/simple-if.c

1 void cond(int a, int *p)
2 {
3 if (p && a > 0)
4 *p += a;
5 }

code/asm/simple-if.c

GCC generates the following assembly code:

1 movl 8(%ebp),%edx
2 movl 12(%ebp),%eax
3 testl %eax,%eax
4 je .L3
5 testl %edx,%edx
6 jle .L3
7 addl %edx,(%eax)
8 .L3:

A. Write a goto version in C that performs the same computation and mimics the control flow of the
assembly code, in the style shown in Figure 3.12(b). You might find it helpful to first annotate the
assembly code as we have done in our examples.

B. Explain why the assembly code contains two conditional branches, even though the C code has
only one if statement.

3.6.5 Loops

C provides several looping constructs, namely while,for, and do-while. No corresponding instructions
exist in assembly. Instead, combinations of conditional tests and jumps are used to implement the effect of
loops. Interestingly, most compilers generate loop code based on the do-while form of a loop, even
though this form is relatively uncommon in actual programs. Other loops are transformed into do-while
form and then compiled into machine code. We will study the translation of loops as a progression, starting
with do-while and then working toward ones with more complex implementations.

Do-While Loops

The general form of a do-while statement is as follows:

do
body-statement
while (test-expr);
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The effect of the loop is to repeatedly execute body-statement, evaluate test-expr and continue the loop if
the evaluation result is nonzero. Observe that body-statement is executed at least once.

Typically, the implementation of do-while has the following general form:

loop:
body-statement
t = test-expr;
if (t)
goto loop;

As an example, Figure 3.13 shows an implementation of a routine to compute the � th element in the Fi-
bonacci sequence using a do-while loop. This sequence is defined by the following recurrence:

� � � �
� � � �

� � � � � � � � � � � � � � � �

For example, the first ten elements of the sequence are 1, 1, 2, 3, 5, 8, 13, 21, 34, and 55. To implement this
using a do-while loop, we have started the sequence with values

� � � �
and

� � � �
, rather than with

� �
and

� � .
The assembly code implementing the loop is also shown, along with a table showing the correspondence
between registers and program values. In this example, body-statement consists of lines 8 through 11,
assigning values to t, val, and nval, along with the incrementing of i. These are implemented by lines
2 through 5 of the assembly code. The expression i < n comprises test-expr. This is implemented by line
6 and by the test condition of the jump instruction on line 7. Once the loop exits, val is copy to register
%eax as the return value (line 8).

Creating a table of register usage, such as we have shown in Figure 3.13(b) is a very helpful step in analyzing
an assembly language program, especially when loops are present.

Practice Problem 3.10:

For the C code

1 int dw_loop(int x, int y, int n)
2 {
3 do {
4 x += n;
5 y *= n;
6 n--;
7 } while ((n > 0) & (y < n)); /* Note use of bitwise ’&’ */
8 return x;
9 }

GCC generates the following assembly code:
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code/asm/fib.c

1 int fib_dw(int n)
2 {
3 int i = 0;
4 int val = 0;
5 int nval = 1;
6

7 do {
8 int t = val + nval;
9 val = nval;

10 nval = t;
11 i++;
12 } while (i < n);
13

14 return val;
15 }

code/asm/fib.c

(a) C code.

Register usage
Register Variable Initially
%ecx i 0
%esi n n
%ebx val 0
%edx nval 1
%eax t –

1 .L6: loop:

2 leal (%edx,%ebx),%eax Compute t = val + nval

3 movl %edx,%ebx copy nval to val

4 movl %eax,%edx Copy t to nval

5 incl %ecx Increment i

6 cmpl %esi,%ecx Compare i:n

7 jl .L6 If less, goto loop

8 movl %ebx,%eax Set val as return value

(b) Corresponding assembly language code.

Figure 3.13: C and assembly code for do-while version of Fibonacci program. Only the code inside
the loop is shown.
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Initially x, y, and n are at offsets 8, 12, and 16 from %ebp

1 movl 8(%ebp),%esi
2 movl 12(%ebp),%ebx
3 movl 16(%ebp),%ecx
4 .p2align 4,,7 Inserted to optimize cache performance

5 .L6:
6 imull %ecx,%ebx
7 addl %ecx,%esi
8 decl %ecx
9 testl %ecx,%ecx

10 setg %al
11 cmpl %ecx,%ebx
12 setl %dl
13 andl %edx,%eax
14 testb $1,%al
15 jne .L6

A. Make a table of register usage, similar to the one shown in Figure 3.13(b).

B. Identify test-expr and body-statement in the C code, and the corresponding lines in the assembly
code.

C. Add annotations to the assembly code describing the operation of the program, similar to those
shown in Figure 3.13(b).

While Loops

The general form of a while statement is as follows:

while (test-expr)
body-statement

It differs from do-while in that test-expr is evaluated and the loop is potentially terminated before the first
execution of body-statement. A direct translation into a form using goto would be:

loop:
t = test-expr;
if (!t)
goto done;

body-statement
goto loop;

done:

This translation requires two control statements within the inner loop—the part of the code that is executed
the most. Instead, most C compilers transform the code into a do-while loop by using a conditional branch
to skip the first execution of the body if needed:
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if (!test-expr)
goto done;

do
body-statement
while (test-expr);

done:

This, in turn, can be transformed into goto code as

t = test-expr;
if (!t)
goto done;

loop:
body-statement
t = test-expr;
if (t)
goto loop;

done:

As an example, Figure 3.14 shows an implementation of the Fibonacci sequence function using a while
loop (a). Observe that this time we have started the recursion with elements

� �
(val) and

� � (nval).
The adjacent C function fib_w_goto (b) shows how this code has been translated into assembly. The
assembly code in (c) closely follows the C code shown in fib_w_goto. The compiler has performed
several interesting optimizations, as can be seen in the goto code (b). First, rather than using variable i as a
loop variable and comparing it to n on each iteration, the compiler has introduced a new loop variable that
we call “nmi”, since relative to the original code, its value equals � � �

. This allows the compiler to use
only three registers for loop variables, compared to four otherwise. Second, it has optimized the initial test
condition (i < n) into (val < n), since the initial values of both i and val are 1. By this means,
the compiler has totally eliminated variable i. Often the compiler can make use of the initial values of
the variables to optimize the initial test. This can make deciphering the assembly code tricky. Third, for
successive executions of the loop we are assured that

��� � , and so the compiler can assume that nmi is
nonnegative. As a result, it can test the loop condition as nmi != 0 rather than nmi >= 0. This saves
one instruction in the assembly code.

Practice Problem 3.11:

For the C code

1 int loop_while(int a, int b)
2 {
3 int i = 0;
4 int result = a;
5 while (i < 256) {
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code/asm/fib.c

1 int fib_w(int n)
2 {
3 int i = 1;
4 int val = 1;
5 int nval = 1;
6

7 while (i < n) {
8 int t = val+nval;
9 val = nval;

10 nval = t;
11 i++;
12 }
13

14 return val;
15 }

code/asm/fib.c

code/asm/fib.c

1 int fib_w_goto(int n)
2 {
3 int val = 1;
4 int nval = 1;
5 int nmi, t;
6

7 if (val >= n)
8 goto done;
9 nmi = n-1;

10

11 loop:
12 t = val+nval;
13 val = nval;
14 nval = t;
15 nmi--;
16 if (nmi)
17 goto loop;
18

19 done:
20 return val;
21 }

code/asm/fib.c

(a) C code. (b) Equivalent goto version of (a).

Register usage
Register Variable Initially
%edx nmi n-1
%ebx val 1
%ecx nval 1

1 movl 8(%ebp),%eax Get n

2 movl $1,%ebx Set val to 1

3 movl $1,%ecx Set nval to 1

4 cmpl %eax,%ebx Compare val:n

5 jge .L9 If >= goto done:

6 leal -1(%eax),%edx nmi = n-1

7 .L10: loop:

8 leal (%ecx,%ebx),%eax Compute t = nval+val

9 movl %ecx,%ebx Set val to nval

10 movl %eax,%ecx Set nval to t

11 decl %edx Decrement nmi

12 jnz .L10 if != 0, goto loop:

13 .L9: done:

(c) Corresponding assembly language code.

Figure 3.14: C and assembly code for while version of Fibonacci. The compiler has performed a
number of optimizations, including replacing the value denoted by variable i with one we call nmi.
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6 result += a;
7 a -= b;
8 i += b;
9 }

10 return result;
11 }

GCC generates the following assembly code:

Initially a and b are at offsets 8 and 12 from %ebp

1 movl 8(%ebp),%eax
2 movl 12(%ebp),%ebx
3 xorl %ecx,%ecx
4 movl %eax,%edx
5 .p2align 4,,7
6 .L5:
7 addl %eax,%edx
8 subl %ebx,%eax
9 addl %ebx,%ecx

10 cmpl $255,%ecx
11 jle .L5

A. Make a table of register usage within the loop body, similar to the one shown in Figure 3.14(c).

B. Identify test-expr and body-statement in the C code, and the corresponding lines in the assembly
code. What optimizations has the C compiler performed on the initial test?

C. Add annotations to the assembly code describing the operation of the program, similar to those
shown in Figure 3.14(c).

D. Write a goto version (in C) of the function that has similar structure to the assembly code, as was
done in Figure 3.14(b).

For Loops

The general form of a for loop is as follows:

for (init-expr; test-expr; update-expr)
body-statement

The C language standard states that the behavior of such a loop is identical to the following code, which
uses a while loop:

init-expr;
while (test-expr)

�

body-statement
update-expr;

�
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That is, the program first evaluates the initialization expression init-expr. It then enters a loop where it
first evaluates the test condition test-expr, exiting if the test fails, then executes the body of the loop body-
statement, and finally evaluates the update expression update-expr.

The compiled form of this code is based on the transformation from while to do-while described previ-
ously, first giving a do-while form:

init-expr;
if (!test-expr)
goto done;

do
�

body-statement
update-expr;

�
while (test-expr);

done:

This, in turn, can be transformed into goto code as

init-expr;
t = test-expr;
if (!t)
goto done;

loop:
body-statement
update-expr;
t = test-expr;
if (t)
goto loop;

done:

As an example, the following code shows an implementation of the Fibonacci function using a for loop:

code/asm/fib.c

1 int fib_f(int n)
2 {
3 int i;
4 int val = 1;
5 int nval = 1;
6

7 for (i = 1; i < n; i++) {
8 int t = val+nval;
9 val = nval;
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10 nval = t;
11 }
12

13 return val;
14 }

code/asm/fib.c

The transformation of this code into the while loop form gives code identical to that for the function fib_w
shown in Figure 3.14. In fact, GCC generates identical assembly code for the two functions.

Practice Problem 3.12:

Consider the following assembly code:

Initially x, y, and n are offsets 8, 12, and 16 from %ebp

1 movl 8(%ebp),%ebx
2 movl 16(%ebp),%edx
3 xorl %eax,%eax
4 decl %edx
5 js .L4
6 movl %ebx,%ecx
7 imull 12(%ebp),%ecx
8 .p2align 4,,7 Inserted to optimize cache performance

9 .L6:
10 addl %ecx,%eax
11 subl %ebx,%edx
12 jns .L6
13 .L4:

The preceding code was generated by compiling C code that had the following overall form:

1 int loop(int x, int y, int n)
2 {
3 int result = 0;
4 int i;
5 for (i = ____; i ____ ; i = ___ ) {
6 result += _____ ;
7 }
8 return result;
9 }

Your task is to fill in the missing parts of the C code to get a program equivalent to the generated assembly
code. Recall that the result of the function is returned in register %eax. To solve this problem, you may
need to do a bit of guessing about register usage and then see whether that guess makes sense.

A. Which registers hold program values result and i?

B. What is the initial value of i?
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C. What is the test condition on i?

D. How does i get updated?

E. The C expression describing how to increment result in the loop body does not change value
from one iteration of the loop to the next. The compiler detected this and moved its computation
to before the loop. What is the expression?

F. Fill in all the missing parts of the C code.

3.6.6 Switch Statements

Switch statements provide a multi-way branching capability based on the value of an integer index. They
are particularly useful when dealing with tests where there can be a large number of possible outcomes.
Not only do they make the C code more readable, they also allow an efficient implementation using a data
structure called a jump table. A jump table is an array where entry

�
is the address of a code segment

implementing the action the program should take when the switch index equals
�
. The code performs an

array reference into the jump table using the switch index to determine the target for a jump instruction. The
advantage of using a jump table over a long sequence of if-else statements is that the time taken to perform
the switch is independent of the number of switch cases. GCC selects the method of translating a switch
statement based on the number of cases and the sparsity of the case values. Jump tables are used when there
are a number of cases (e.g., four or more) and they span a small range of values.

Figure 3.15(a) shows an example of a C switch statement. This example has a number of interesting
features, including case labels that do not span a contiguous range (there are no labels for cases 101 and
105), cases with multiple labels (cases 104 and 106), and cases that fall through to other cases (case 102),
because the code for the case does not end with a break statement.

Figure 3.16 shows the assembly code generated when compiling switch_eg. The behavior of this code
is shown using an extended form of C as the procedure switch_eg_impl in Figure 3.15(b). We say
“extended” because C does not provide the necessary constructs to support this style of jump table, and
hence our code is not legal C. The array jt contains 7 entries, each of which is the address of a block of
code. We extend C with a data type code for this purpose.

Lines 1 to 4 set up the jump table access. To make sure that values of x that are either less than 100 or greater
than 106 cause the computation specified by the default case, the code generates an unsigned value xi
equal to x-100. For values of x between 100 and 106, xi will have values 0 through 6. All other values
will be greater than 6, since negative values of x-100will wrap around to be very large unsigned numbers.
The code therefore uses the ja (unsigned greater) instruction to jump to code for the default case when xi
is greater than 6. Using jt to indicate the jump table, the code then performs a jump to the address at entry
xi in this table. Note that this form of goto is not legal C. Instruction 4 implements the jump to an entry
in the jump table. Since it is an indirect jump, the target is read from memory. The effective address of the
read is determined by adding the base address specified by label .L10 to the scaled (by 4 since each jump
table entry is 4 bytes) value of variable xi (in register %eax).

In the assembly code, the jump table is indicated by the following declarations, to which we have added
comments:

1 .section .rodata
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code/asm/switch.c

1 int switch_eg(int x)
2 {
3 int result = x;
4

5 switch (x) {
6

7 case 100:
8 result *= 13;
9 break;

10

11 case 102:
12 result += 10;
13 /* Fall through */
14

15 case 103:
16 result += 11;
17 break;
18

19 case 104:
20 case 106:
21 result *= result;
22 break;
23

24 default:
25 result = 0;
26 }
27

28 return result;
29 }

code/asm/switch.c

code/asm/switch.c

1 /* Next line is not legal C */
2 code *jt[7] = {
3 loc_A, loc_def, loc_B, loc_C,
4 loc_D, loc_def, loc_D
5 };
6

7 int switch_eg_impl(int x)
8 {
9 unsigned xi = x - 100;

10 int result = x;
11

12 if (xi > 6)
13 goto loc_def;
14

15 /* Next goto is not legal C */
16 goto jt[xi];
17

18 loc_A: /* Case 100 */
19 result *= 13;
20 goto done;
21

22 loc_B: /* Case 102 */
23 result += 10;
24 /* Fall through */
25

26 loc_C: /* Case 103 */
27 result += 11;
28 goto done;
29

30 loc_D: /* Cases 104, 106 */
31 result *= result;
32 goto done;
33

34 loc_def: /* Default case*/
35 result = 0;
36

37 done:
38 return result;
39 }

code/asm/switch.c

(a) Switch statement. (b) Translation into extended C.

Figure 3.15: Switch statement example with translation into extended C. The translation shows the
structure of jump table jt and how it is accessed. Such tables and accesses are not actually allowed in C.
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Set up the jump table access

1 leal -100(%edx),%eax Compute xi = x-100

2 cmpl $6,%eax Compare xi:6

3 ja .L9 if >, goto loc def

4 jmp *.L10(,%eax,4) Goto jt[xi]

Case 100

5 .L4: loc A:

6 leal (%edx,%edx,2),%eax Compute 3*x

7 leal (%edx,%eax,4),%edx Compute x+4*3*x

8 jmp .L3 Goto done

Case 102

9 .L5: loc B:

10 addl $10,%edx result += 10, Fall through

Case 103

11 .L6: loc C:

12 addl $11,%edx result += 11

13 jmp .L3 Goto done

Cases 104, 106

14 .L8: loc D:

15 imull %edx,%edx result *= result

16 jmp .L3 Goto done

Default case

17 .L9: loc def:

18 xorl %edx,%edx result = 0

Return result

19 .L3: done:

20 movl %edx,%eax Set result as return value

Figure 3.16: Assembly code for switch statement example in Figure 3.15.
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2 .align 4 Align address to multiple of 4

3 .L10:
4 .long .L4 Case 100: loc_A

5 .long .L9 Case 101: loc_def

6 .long .L5 Case 102: loc_B

7 .long .L6 Case 103: loc_C

8 .long .L8 Case 104: loc_D

9 .long .L9 Case 105: loc_def

10 .long .L8 Case 106: loc_D

These declarations state that within the segment of the object code file called “.rodata” (for “Read-Only
Data”), there should be a sequence of seven “long” (4-byte) words, where the value of each word is given by
the instruction address associated with the indicated assembly code labels (e.g., .L4). Label .L10 marks
the start of this allocation. The address associated with this label serves as the base for the indirect jump
(instruction 4).

The code blocks starting with labels loc_A through loc_D and loc_def in switch_eg_impl (Figure
3.15(b)) implement the five different branches of the switch statement. Observe that the block of code
labeled loc_def will be executed either when x is outside the range 100 to 106 (by the initial range
checking) or when it equals either 101 or 105 (based on the jump table). Note how the code for the block
labeled loc_B falls through to the block labeled loc_C.

Practice Problem 3.13:

In the C function that follows, we have omitted the body of the switch statement. In the C code, the case
labels did not span a contiguous range, and some cases had multiple labels.

int switch2(int x) {
int result = 0;
switch (x) {

/* Body of switch statement omitted */
}
return result;

}

In compiling the function, GCC generates the assembly code that follows for the initial part of the pro-
cedure and for the jump table. Variable x is initially at offset 8 relative to register %ebp.

Setting up jump table access

1 movl 8(%ebp),%eax Retrieve x

2 addl $2,%eax
3 cmpl $6,%eax
4 ja .L10
5 jmp *.L11(,%eax,4)

Jump table for switch2

1 .L11:
2 .long .L4
3 .long .L10
4 .long .L5
5 .long .L6
6 .long .L8
7 .long .L8
8 .long .L9

Use the foregoing information to answer the following questions:

A. What were the values of the case labels in the switch statement body?
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B. What cases had multiple labels in the C code?

3.7 Procedures

A procedure call involves passing both data (in the form of procedure parameters and return values) and
control from one part of the code to another. In addition, it must allocate space for the local variables of
the procedure on entry and deallocate them on exit. Most machines, including IA32, provide only simple
instructions for transferring control to and from procedures. The passing of data and the allocation and
deallocation of local variables is handled by manipulating the program stack.

3.7.1 Stack Frame Structure

IA32 programs make use of the program stack to support procedure calls. The stack is used to pass procedure
arguments, to store return information, to save registers for later restoration, and for local storage. The
portion of the stack allocated for a single procedure call is called a stack frame. Figure 3.17 diagrams the
general structure of a stack frame. The topmost stack frame is delimited by two pointers, with register %ebp
serving as the frame pointer, and register %esp serving as the stack pointer. The stack pointer can move
while the procedure is executing, and hence most information is accessed relative to the frame pointer.

Suppose procedure P (the caller) calls procedure Q (the callee). The arguments to Q are contained within
the stack frame for P. In addition, when P calls Q, the return address within P where the program should
resume execution when it returns from Q is pushed on the stack, forming the end of P’s stack frame. The
stack frame for Q starts with the saved value of the frame pointer (i.e., %ebp). followed by copies of any
other saved register values.

Procedure Q also uses the stack for any local variables that cannot be stored in registers. This can occur for
the following reasons:

� There are not enough registers to hold all of the local data.

� Some of the local variables are arrays or structures and hence must be accessed by array or structure
references.

� The address operator ‘&’ is applied to one of the local variables, and hence we must be able to generate
an address for it.

Finally, Q will use the stack frame for storing arguments to any procedures it calls.

As described earlier, the stack grows toward lower addresses and the stack pointer %esp points to the top
element of the stack. Data can be stored on and retrieved from the stack using the pushl and popl instruc-
tions. Space for data with no specified initial value can be allocated on the stack by simply decrementing
the stack pointer by an appropriate amount. Similarly, space can be deallocated by incrementing the stack
pointer.
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Figure 3.17: Stack frame structure. The stack is used for passing arguments, for storing return informa-
tion, for saving registers, and for local storage.
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3.7.2 Transferring Control

The instructions supporting procedure calls and returns are shown in the following table:

Instruction Description
call Label Procedure call
call *Operand Procedure call
leave Prepare stack for return
ret Return from call

The call instruction has a target indicating the address of the instruction where the called procedure starts.
Like jumps, a call can either be direct or indirect. In assembly code, the target of a direct call is given as a
label, while the target of an indirect call is given by a * followed by an operand specifier having the same
syntax as is used for the operands of the movl instruction (Figure 3.3).

The effect of a call instruction is to push a return address on the stack and jump to the start of the
called procedure. The return address is the address of the instruction immediately following the call in
the program, so that execution will resume at this location when the called procedure returns. The ret
instruction pops an address off the stack and jumps to this location. The proper use of this instruction is to
have prepared the stack so that the stack pointer points to the place where the preceding call instruction
stored its return address. The leave instruction can be used to prepare the stack for returning. It is
equivalent to the following code sequence:

1 movl %ebp, %esp Set stack pointer to beginning of frame

2 popl %ebp Restore saved %ebp and set stack ptr to end of caller’s frame

Alternatively, this preparation can be performed by an explicit sequence of move and pop operations.

Register %eax is used for returning the value of any function that returns an integer or pointer.

Practice Problem 3.14:

The following code fragment occurs often in the compiled version of library routines:

1 call next
2 next:
3 popl %eax

A. To what value does register %eax get set?

B. Explain why there is no matching ret instruction to this call.

C. What useful purpose does this code fragment serve?

3.7.3 Register Usage Conventions

The set of program registers acts as a single resource shared by all of the procedures. Although only one
procedure can be active at a given time, we must make sure that when one procedure (the caller) calls
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another (the callee), the callee does not overwrite some register value that the caller planned to use later.
For this reason, IA32 adopts a uniform set of conventions for register usage that must be respected by all
procedures, including those in program libraries.

By convention, registers %eax, %edx, and %ecx are classified as caller save registers. When procedure
Q is called by P, it can overwrite these registers without destroying any data required by P. On the other
hand, registers %ebx, %esi, and %edi are classified as callee save registers. This means that Q must save
the values of any of these registers on the stack before overwriting them, and restore them before returning,
because P (or some higher level procedure) may need these values for its future computations. In addition,
registers %ebp and %esp must be maintained according to the conventions described here.

Aside: Why the names “callee save” and “caller save?”
Consider the following scenario:

int P()
{

int x = f(); /* Some computation */
Q();
return x;

}

Procedure P wants the value it has computed for x to remain valid across the call to Q. If x is in a caller save register,
then P (the caller) must save the value before calling P and restore it after Q returns. If x is in a callee save register,
and Q (the callee) wants to use this register, then Q must save the value before using the register and restore it before
returning. In either case, saving involves pushing the register value onto the stack, while restoring involves popping
from the stack back to the register. End Aside.

As an example, consider the following code:

1 int P(int x)
2 {
3 int y = x*x;
4 int z = Q(y);
5

6 return y + z;
7 }

Procedure P computes y before calling Q, but it must also ensure that the value of y is available after Q
returns. It can do this by one of two means:

� It can store the value of y in its own stack frame before calling Q; when Q returns, it can then retrieve
the value of y from the stack.

� It can store the value of y in a callee save register. If Q, or any procedure called by Q, wants to use
this register, it must save the register value in its stack frame and restore the value before it returns.
Thus, when Q returns to P, the value of y will be in the callee save register, either because the register
was never altered or because it was saved and restored.
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Most commonly, GCC uses the latter convention, since it tends to reduce the total number of stack writes
and reads.

Practice Problem 3.15:

The following code sequence occurs right near the beginning of the assembly code generated by GCC

for a C procedure:

1 pushl %edi
2 pushl %esi
3 pushl %ebx
4 movl 24(%ebp),%eax
5 imull 16(%ebp),%eax
6 movl 24(%ebp),%ebx
7 leal 0(,%eax,4),%ecx
8 addl 8(%ebp),%ecx
9 movl %ebx,%edx

We see that just three registers (%edi, %esi, and %ebx) are saved on the stack. The program then
modifies these and three other registers (%eax, %ecx, and %edx). At the end of the procedure, the
values of registers %edi, %esi, and %ebx are restored using popl instructions, while the other three
are left in their modified states.

Explain this apparent inconsistency in the saving and restoring of register states.

3.7.4 Procedure Example

As an example, consider the C procedures defined in Figure 3.18. Figure 3.19 shows the stack frames for
the two procedures. Observe that swap_add retrieves its arguments from the stack frame for caller.
These locations are accessed relative to the frame pointer in register %ebp. The numbers along the left of
the frames indicate the address offsets relative to the frame pointer.

The stack frame for caller includes storage for local variables arg1 and arg2, at positions � � and
� � relative to the frame pointer. These variables must be stored on the stack, since we must generate
addresses for them. The following assembly code from the compiled version of caller shows how it calls
swap_add.

Calling code in caller

1 leal -4(%ebp),%eax Compute &arg2

2 pushl %eax Push &arg2

3 leal -8(%ebp),%eax Compute &arg1

4 pushl %eax Push &arg1

5 call swap_add Call the swap_add function

Observe that this code computes the addresses of local variables arg2 and arg1 (using the leal instruc-
tion) and pushes them on the stack. It then calls swap_add.

The compiled code for swap_add has three parts: the “setup,” where the stack frame is initialized; the
“body,” where the actual computation of the procedure is performed; and the “finish,” where the stack state
is restored and the procedure returns.
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code/asm/swapadd.c

1 int swap_add(int *xp, int *yp)
2 {
3 int x = *xp;
4 int y = *yp;
5

6 *xp = y;
7 *yp = x;
8 return x + y;
9 }

10

11 int caller()
12 {
13 int arg1 = 534;
14 int arg2 = 1057;
15 int sum = swap_add(&arg1, &arg2);
16 int diff = arg1 - arg2;
17

18 return sum * diff;
19 }

code/asm/swapadd.c

Figure 3.18: Example of procedure definition and call.
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Figure 3.19: Stack frames for caller and swap add. Procedure swap add retrieves its arguments from
the stack frame for caller.
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The following is the setup code for swap_add. Recall that the call instruction will already push the
return address on the stack.

Setup code in swap_add

1 swap_add:
2 pushl %ebp Save old %ebp

3 movl %esp,%ebp Set %ebp as frame pointer

4 pushl %ebx Save %ebx

Procedure swap_add requires register %ebx for temporary storage. Since this is a callee save register, it
pushes the old value on the stack as part of the stack frame setup.

The following is the body code for swap_add:

Body code in swap_add

5 movl 8(%ebp),%edx Get xp

6 movl 12(%ebp),%ecx Get yp

7 movl (%edx),%ebx Get x

8 movl (%ecx),%eax Get y

9 movl %eax,(%edx) Store y at *xp

10 movl %ebx,(%ecx) Store x at *yp

11 addl %ebx,%eax Set return value = x+y

This code retrieves its arguments from the stack frame for caller. Since the frame pointer has shifted, the
locations of these arguments has shifted from positions �

� � and �
� 	

relative to the old value of %ebp to
positions

� � � and
� � relative to new value of %ebp. Observe that the sum of variables x and y is stored in

register %eax to be passed as the returned value.

The following is the finishing code for swap_add:

Finishing code in swap_add

12 popl %ebx Restore %ebx

13 movl %ebp,%esp Restore %esp

14 popl %ebp Restore %ebp

15 ret Return to caller

This code simply restores the values of the three registers %ebx, %esp, and %ebp, and then executes the
ret instruction. Note that instructions 13 and 14 could be replaced by a single leave instruction. Different
versions of GCC seem to have different preferences in this regard.

The following code in caller comes immediately after the instruction calling swap_add:

6 movl %eax,%edx Resume here

Upon return from swap_add, procedure caller will resume execution with this instruction. Observe
that this instruction copies the return value from %eax to a different register.

Practice Problem 3.16:

Given the C function
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1 int proc(void)
2 {
3 int x,y;
4 scanf("%x %x", &y, &x);
5 return x-y;
6 }

GCC generates the following assembly code:

1 proc:
2 pushl %ebp
3 movl %esp,%ebp
4 subl $24,%esp
5 addl $-4,%esp
6 leal -4(%ebp),%eax
7 pushl %eax
8 leal -8(%ebp),%eax
9 pushl %eax

10 pushl $.LC0 Pointer to string "%x %x"

11 call scanf
Diagram stack frame at this point

12 movl -8(%ebp),%eax
13 movl -4(%ebp),%edx
14 subl %eax,%edx
15 movl %edx,%eax
16 movl %ebp,%esp
17 popl %ebp
18 ret

Assume that procedure proc starts executing with the following register values:

Register Value
%esp 0x800040
%ebp 0x800060

Suppose proc calls scanf (line 11), and that scanf reads values 0x46 and 0x53 from the standard
input. Assume that the string "%x %x" is stored at memory location 0x300070.

A. What value does %ebp get set to on line 3?

B. At what addresses are local variables x and y stored?

C. What is the value of %esp after line 10?

D. Draw a diagram of the stack frame for proc right after scanf returns. Include as much informa-
tion as you can about the addresses and the contents of the stack frame elements.

E. Indicate the regions of the stack frame that are not used by proc (these wasted areas are allocated
to improve the cache performance).
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code/asm/fib.c

1 int fib_rec(int n)
2 {
3 int prev_val, val;
4

5 if (n <= 2)
6 return 1;
7 prev_val = fib_rec(n-2);
8 val = fib_rec(n-1);
9 return prev_val + val;

10 }

code/asm/fib.c

Figure 3.20: C code for recursive Fibonacci Program.

3.7.5 Recursive Procedures

The stack and linkage conventions described in the previous section allow procedures to call themselves
recursively. Since each call has its own private space on the stack, the local variables of the multiple
outstanding calls do not interfere with one another. Furthermore, the stack discipline naturally provides the
proper policy for allocating local storage when the procedure is called and deallocating it when it returns.

Figure 3.20 shows the C code for a recursive Fibonacci function. (Note that this code is very inefficient—we
intend it to be an illustrative example, not a clever algorithm). The complete assembly code is shown as
well in Figure 3.21.

Although there is a lot of code, it is worth studying closely. The set-up code (lines 2 to 6) creates a stack
frame containing the old version of %ebp, 16 unused bytes,2 and saved values for the callee save registers
%esi and %ebx, as diagrammed on the left side of Figure 3.22. It then uses register %ebx to hold the
procedure parameter n (line 7). In the event of a terminal condition, the code jumps to line 22, where the
return value is set to 1.

For the nonterminal condition, instructions 10 to 12 set up the first recursive call. This involves allocating
12 bytes on the stack that are never used, and then pushing the computed value n-2. At this point, the stack
frame will have the form shown on the right side of Figure 3.22. It then makes the recursive call, which
will trigger a number of calls that allocate stack frames, perform operations on local storage, and so on. As
each call returns, it deallocates any stack space and restores any modified callee save registers. Thus, when
we return to the current call at line 14 we can assume that register %eax contains the value returned by the
recursive call, and that register %ebx contains the value of function parameter n. The returned value (local
variable prev_val in the C code) is stored in register %esi (line 14). By using a callee save register, we
can be sure that this value will still be available after the second recursive call.

Instructions 15 to 17 set up the second recursive call. Again it allocates 12 bytes that are never used, and
pushes the value of n-1. Following this call (line 18), the computed result will be in register %eax, and we
can assume that the result of the previous call is in register %esi. These are added to give the return value

2It is unclear why the C compiler allocates so much unused storage on the stack for this function.
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1 fib_rec:
Setup code

2 pushl %ebp Save old %ebp

3 movl %esp,%ebp Set %ebp as frame pointer

4 subl $16,%esp Allocate 16 bytes on stack

5 pushl %esi Save %esi (offset -20)

6 pushl %ebx Save %ebx (offset -24)

Body code

7 movl 8(%ebp),%ebx Get n

8 cmpl $2,%ebx Compare n:2

9 jle .L24 if <=, goto terminate

10 addl $-12,%esp Allocate 12 bytes on stack

11 leal -2(%ebx),%eax Compute n-2

12 pushl %eax Push as argument

13 call fib_rec Call fib_rec(n-2)

14 movl %eax,%esi Store result in %esi

15 addl $-12,%esp Allocate 12 bytes to stack

16 leal -1(%ebx),%eax Compute n-1

17 pushl %eax Push as argument

18 call fib_rec Call fib_rec(n-1)

19 addl %esi,%eax Compute val+nval

20 jmp .L25 Go to done

Terminal condition

21 .L24: terminate:

22 movl $1,%eax Return value 1

Finishing code

23 .L25: done:

24 leal -24(%ebp),%esp Set stack to offset -24

25 popl %ebx Restore %ebx

26 popl %esi Restore %esi

27 movl %ebp,%esp Restore stack pointer

28 popl %ebp Restore %ebp

29 ret Return

Figure 3.21: Assembly code for the recursive Fibonacci program in Figure 3.20.
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Figure 3.22: Stack frame for recursive Fibonacci function. State of frame is shown after initial set up
(left), and just before the first recursive call (right).
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(instruction 19).

The completion code restores the registers and deallocates the stack frame. It starts (line 24) by setting
the stack frame to the location of the saved value of %ebx. Observe that by computing this stack position
relative to the value of %ebp, the computation will be correct regardless of whether or not the terminal
condition was reached.

3.8 Array Allocation and Access

Arrays in C are one means of aggregating scalar data into larger data types. C uses a particularly simple
implementation of arrays, and hence the translation into machine code is fairly straightforward. One unusual
feature of C is that one can generate pointers to elements within arrays and perform arithmetic with these
pointers. These are translated into address computations in assembly code.

Optimizing compilers are particularly good at simplifying the address computations used by array indexing.
This can make the correspondence between the C code and its translation into machine code somewhat
difficult to decipher.

3.8.1 Basic Principles

For data type
�

and integer constant
�

, the declaration

�
A[

�
];

has two effects. First, it allocates a contiguous region of � � �
bytes in memory, where � is the size (in

bytes) of data type
�

. Let us denote the starting location as � A. Second, it introduces an identifier A that can
be used as a pointer to the beginning of the array. The value of this pointer will be �

A. The array elements
can be accessed using an integer index ranging between

�
and

�
� �

. Array element
�

will be stored at
address � A � � � � .
As examples, consider the following declarations:

char A[12];
char *B[8];
double C[6];
double *D[5];

These declarations will generate arrays with the following parameters:

Array Element size Total size Start address Element
�

A 1 12 �
A

�
A
� �

B 4 32 �
B

�
B
� � �

C 8 48 �
C

�
C
� � �

D 4 20 �
D

�
D
� � �
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Array A consists of 12 single-byte (char) elements. Array C consists of 6 double-precision floating-point
values, each requiring 8 bytes. B and D are both arrays of pointers, and hence the array elements are 4 bytes
each.

The memory referencing instructions of IA32 are designed to simplify array access. For example, suppose
E is an array of int’s, and we wish to compute E[i], where the address of E is stored in register %edx
and i is stored in register %ecx. Then the instruction

movl (%edx,%ecx,4),%eax

will perform the address computation �
E
� � � , read that memory location, and store the result in register

%eax. The allowed scaling factors of 1, 2, 4, and 8 cover the sizes of the primitive data types.

Practice Problem 3.17:

Consider the following declarations:

short S[7];
short *T[3];
short **U[6];
long double V[8];
long double *W[4];

Fill in the following table describing the element size, the total size, and the address of element
�

for
each of these arrays.

Array Element size Total size Start address Element
�

S �
S

T �
T

U �
U

V �
V

W �
W

3.8.2 Pointer Arithmetic

C allows arithmetic on pointers, where the computed value is scaled according to the size of the data type
referenced by the pointer. That is, if p is a pointer to data of type

�
, and the value of p is �

p, then the
expression p+i has value �

p
� � � � where � is the size of data type

�
.

The unary operators & and * allow the generation and dereferencing of pointers. That is, for an expression
Expr denoting some object, &Expr is a pointer giving the address of the object. For an expression Addr-
Expr denoting an address, *Addr-Expr gives the value at that address. The expressions Expr and *&Expr are
therefore equivalent. The array subscripting operation can be applied to both arrays and pointers. The array
reference A[i] is identical to the expression *(A+i). It computes the address of the

�
th array element and

then accesses this memory location.

Expanding on our earlier example, suppose the starting address of integer array E and integer index i are
stored in registers %edx and %ecx, respectively. The following are some expressions involving E. We also
show an assembly code implementation of each expression, with the result being stored in register %eax.
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Expression Type Value Assembly code
E int * �

E movl %edx,%eax
E[0] int M

� �
E
�

movl (%edx),%eax
E[i] int M

� �
E
� � � � movl (%edx,%ecx,4),%eax

&E[2] int * �
E
� � leal 8(%edx),%eax

E+i-1 int * �
E
� � � � � leal -4(%edx,%ecx,4),%eax

*(&E[i]+i) int M
� �
E
� � � � � � � movl (%edx,%ecx,8),%eax

&E[i]-E int
�

movl %ecx,%eax

In these examples, the leal instruction is used to generate an address, while movl is used to reference
memory (except in the first case, where it copies an address). The final example shows that one can compute
the difference of two pointers within the same data structure, with the result divided by the size of the data
type.

Practice Problem 3.18:

Suppose the address of short integer array S and integer index i are stored in registers %edx and
%ecx, respectively. For each of the following expressions, give its type, a formula for its value, and an
assembly code implementation. The result should be stored in register %eax if it is a pointer and register
element %ax if it is a short integer.

Expression Type Value Assembly code
S+1
S[3]
&S[i]
S[4*i+1]
S+i-5

3.8.3 Arrays and Loops

Array references within loops often have very regular patterns that can be exploited by an optimizing com-
piler. For example, the function decimal5 shown in Figure 3.23(a) computes the integer represented by
an array of 5 decimal digits. In converting this to assembly code, the compiler generates code similar to
that shown in Figure 3.23(b) as C function decimal5_opt. First, rather than using a loop index i, it
uses pointer arithmetic to step through successive array elements. It computes the address of the final array
element and uses a comparison to this address as the loop test. Finally, it can use a do-while loop since
there will be at least one loop iteration.

The assembly code shown in Figure 3.23(c) shows a further optimization to avoid the use of an integer
multiply instruction. In particular, it uses leal (line 5) to compute 5*val as val+4*val. It then uses
leal with a scaling factor of 2 (line 7) to scale to 10*val.

Aside: Why avoid integer multiply?
In older models of the IA32 processor, the integer multiply instruction took as many as 30 clock cycles, and so
compilers try to avoid it whenever possible. In the most recent models it requires only 3 clock cycles, and therefore
these optimizations are not warranted. End Aside.
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code/asm/decimal5.c

1 int decimal5(int *x)
2 {
3 int i;
4 int val = 0;
5

6 for (i = 0; i < 5; i++)
7 val = (10 * val) + x[i];
8

9 return val;
10 }

code/asm/decimal5.c

code/asm/decimal5.c

1 int decimal5_opt(int *x)
2 {
3 int val = 0;
4 int *xend = x + 4;
5

6 do {
7 val = (10 * val) + *x;
8 x++;
9 } while (x <= xend);

10

11 return val;
12 }

code/asm/decimal5.c

(a) Original C code (b) Equivalent pointer code

Body code

1 movl 8(%ebp),%ecx Get base addr of array x

2 xorl %eax,%eax val = 0;

3 leal 16(%ecx),%ebx xend = x+4 (16 bytes = 4 double words)

4 .L12: loop:

5 leal (%eax,%eax,4),%edx Compute 5*val

6 movl (%ecx),%eax Compute *x

7 leal (%eax,%edx,2),%eax Compute *x + 2*(5*val)

8 addl $4,%ecx x++

9 cmpl %ebx,%ecx Compare x:xend

10 jbe .L12 if <=, goto loop:

(c) Corresponding assembly code.

Figure 3.23: C and assembly code for array loop example. The compiler generates code similar to the
pointer code shown in decimal5 opt.
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3.8.4 Nested Arrays

The general principles of array allocation and referencing hold even when we create arrays of arrays. For
example, the declaration

int A[4][3];

is equivalent to the declaration

typedef int row3_t[3];
row3_t A[4];

Data type row3_t is defined to be an array of three integers. Array A contains four such elements, each
requiring 12 bytes to store the three integers. The total array size is then ��� �"� � � ��� bytes.

Array A can also be viewed as a two-dimensional array with four rows and three columns, referenced as
A[0][0] through A[3][2]. The array elements are ordered in memory in “row major” order, meaning
all elements of row 0, followed by all elements of row 1, and so on.

Element Address
A[0][0] �

A
A[0][1] �

A
� �

A[0][2] �
A
� �

A[1][0] �
A
� � �

A[1][1] �
A
� � 	

A[1][2] �
A
� � �

A[2][0] �
A
� � �

A[2][1] �
A
� ���

A[2][2] �
A
� � �

A[3][0] �
A
� � 	

A[3][1] �
A
� � �

A[3][2] �
A
� � �

This ordering is a consequence of our nested declaration. Viewing A as an array of four elements, each of
which is an array of three int’s, we first have A[0] (i.e., row 0), followed by A[1], and so on.

To access elements of multidimensional arrays, the compiler generates code to compute the offset of the
desired element and then uses a movl instruction using the start of the array as the base address and the
(possibly scaled) offset as an index. In general, for an array declared as

�
D[

�
][

�
];

array element D[i][j] is at memory address � D � � � � � � � � � , where � is the size of data type
�

in bytes.

As an example, consider the � � � integer array A defined earlier. Suppose register %eax contains � A, %edx
holds i, and %ecx holds j. Then array element A[i][j] can be copied to register %eax by the following
code:



176 CHAPTER 3. MACHINE-LEVEL REPRESENTATION OF PROGRAMS

A in %eax, i in %edx, j in %ecx

1 sall $2,%ecx j * 4

2 leal (%edx,%edx,2),%edx i * 3

3 leal (%ecx,%edx,4),%edx j * 4 + i * 12

4 movl (%eax,%edx),%eax Read M
�

�

A
� ��� ��� � � �����

Practice Problem 3.19:

Consider the following source code, where M and N are constants declared with #define:

1 int mat1[M][N];
2 int mat2[N][M];
3

4 int sum_element(int i, int j)
5 {
6 return mat1[i][j] + mat2[j][i];
7 }

In compiling this program, GCC generates the following assembly code:

1 movl 8(%ebp),%ecx
2 movl 12(%ebp),%eax
3 leal 0(,%eax,4),%ebx
4 leal 0(,%ecx,8),%edx
5 subl %ecx,%edx
6 addl %ebx,%eax
7 sall $2,%eax
8 movl mat2(%eax,%ecx,4),%eax
9 addl mat1(%ebx,%edx,4),%eax

Use your reverse engineering skills to determine the values of M and N based on this assembly code.

3.8.5 Fixed Size Arrays

The C compiler is able to make many optimizations for code operating on multi-dimensional arrays of fixed
size. For example, suppose we declare data type fix_matrix to be

� 	
�
� 	

arrays of integers as follows:

1 #define N 16
2 typedef int fix_matrix[N][N];

The code in Figure 3.24(a) computes element
� � �

of the product of matrices A and B. The C compiler
generates code similar to that shown in Figure 3.24(b). This code contains a number of clever optimizations.
It recognizes that the loop will access the elements of array A as A[i][0], A[i][1], . . . , A[i][15] in
sequence. These elements occupy adjacent positions in memory starting with the address of array element
A[i][0]. The program can therefore use a pointer variable Aptr to access these successive locations.
The loop will access the elements of array B as B[0][k], B[1][k], . . . , B[15][k] in sequence. These
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elements occupy positions in memory starting with the address of array element B[0][k] and spaced 64
bytes apart. The program can therefore use a pointer variable Bptr to access these successive locations. In
C, this pointer is shown as being incremented by 16, although in fact the actual pointer is incremented by
��� � 	 � 	 � . Finally, the code can use a simple counter to keep track of the number of iterations required.

We have shown the C code fix_prod_ele_opt to illustrate the optimizations made by the C compiler
in generating the assembly. The following is the actual assembly code for the loop:

Aptr is in %edx, Bptr in %ecx, result in %esi, cnt in %ebx

1 .L23: loop:

2 movl (%edx),%eax Compute t = *Aptr

3 imull (%ecx),%eax Compute v = *Bptr * t

4 addl %eax,%esi Add v result

5 addl $64,%ecx Add 64 to Bptr

6 addl $4,%edx Add 4 to Aptr

7 decl %ebx Decrement cnt

8 jns .L23 if >=, goto loop

Note that in the above code, all pointer increments are scaled by a factor of 4 relative to the C code.

Practice Problem 3.20:

The following C code sets the diagonal elements of a fixed-size array to val:

1 /* Set all diagonal elements to val */
2 void fix_set_diag(fix_matrix A, int val)
3 {
4 int i;
5 for (i = 0; i < N; i++)
6 A[i][i] = val;
7 }

When compiled, GCC generates the following assembly code:

1 movl 12(%ebp),%edx
2 movl 8(%ebp),%eax
3 movl $15,%ecx
4 addl $1020,%eax
5 .p2align 4,,7 Added to optimize cache performance

6 .L50:
7 movl %edx,(%eax)
8 addl $-68,%eax
9 decl %ecx

10 jns .L50

Create a C code programfix_set_diag_opt that uses optimizations similar to those in the assembly
code, in the same style as the code in Figure 3.24(b).
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code/asm/array.c

1 #define N 16
2 typedef int fix_matrix[N][N];
3

4 /* Compute i,k of fixed matrix product */
5 int fix_prod_ele (fix_matrix A, fix_matrix B, int i, int k)
6 {
7 int j;
8 int result = 0;
9

10 for (j = 0; j < N; j++)
11 result += A[i][j] * B[j][k];
12

13 return result;
14 }

code/asm/array.c

(a) Original C code

code/asm/array.c

1 /* Compute i,k of fixed matrix product */
2 int fix_prod_ele_opt(fix_matrix A, fix_matrix B, int i, int k)
3 {
4 int *Aptr = &A[i][0];
5 int *Bptr = &B[0][k];
6 int cnt = N - 1;
7 int result = 0;
8

9 do {
10 result += (*Aptr) * (*Bptr);
11 Aptr += 1;
12 Bptr += N;
13 cnt--;
14 } while (cnt >= 0);
15

16 return result;
17 }

code/asm/array.c

(b) Optimized C code.

Figure 3.24: Original and optimized code to compute element
� � �

of matrix product for fixed length
Arrays. The compiler performs these optimizations automatically.
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3.8.6 Dynamically Allocated Arrays

C only supports multidimensional arrays where the sizes (with the possible exception of the first dimension)
are known at compile time. In many applications, we require code that will work for arbitrary size arrays
that have been dynamically allocated. For these we must explicitly encode the mapping of multidimensional
arrays into one-dimensional ones. We can define a data type var_matrix as simply an int *:

typedef int *var_matrix;

To allocate and initialize storage for an � � � array of integers, we use the Unix library function calloc:

1 var_matrix new_var_matrix(int n)
2 {
3 return (var_matrix) calloc(sizeof(int), n * n);
4 }

The calloc function (documented as part of ANSI C [32, 41]) takes two arguments: the size of each array
element and the number of array elements required. It attempts to allocate space for the entire array. If
successful, it initializes the entire region of memory to 0s and returns a pointer to the first byte. If sufficient
space is not available, it returns null.

New to C?: Dynamic memory allocation and deallocation in C, C++, and Java.
In C, storage on the heap (a pool of memory available for storing data structures) is allocated using the library
function malloc or its cousin calloc. Their effect is similar to that of the new operation in C++ and Java.
Both C and C++ require the program to explictly free allocated space using the free function. In Java, freeing
is performed automatically by the run-time system via a process called garbage collection, as will be discussed in
Chapter 10. End.

We can then use the indexing computation of row-major ordering to determine the position of element
� � �

of the matrix as
� ��� � � :

1 int var_ele(var_matrix A, int i, int j, int n)
2 {
3 return A[(i*n) + j];
4 }

This referencing translates into the following assembly code:

1 movl 8(%ebp),%edx Get A

2 movl 12(%ebp),%eax Get i

3 imull 20(%ebp),%eax Compute n*i

4 addl 16(%ebp),%eax Compute n*i + j

5 movl (%edx,%eax,4),%eax Get A[i*n + j]

Comparing this code with that used to index into a fixed-size array, we see that the dynamic version is
somewhat more complex. It must use a multiply instruction to scale

�
by � , rather than a series of shifts and

adds. In modern processors, this multiplication does not incur a significant performance penalty.
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code/asm/array.c

1 typedef int *var_matrix;
2

3 /* Compute i,k of variable matrix product */
4 int var_prod_ele(var_matrix A, var_matrix B, int i, int k, int n)
5 {
6 int j;
7 int result = 0;
8

9 for (j = 0; j < n; j++)
10 result += A[i*n + j] * B[j*n + k];
11

12 return result;
13 }

code/asm/array.c

(a) Original C code

code/asm/array.c

1 /* Compute i,k of variable matrix product */
2 int var_prod_ele_opt(var_matrix A, var_matrix B, int i, int k, int n)
3 {
4 int *Aptr = &A[i*n];
5 int nTjPk = n;
6 int cnt = n;
7 int result = 0;
8

9 if (n <= 0)
10 return result;
11

12 do {
13 result += (*Aptr) * B[nTjPk];
14 Aptr += 1;
15 nTjPk += n;
16 cnt--;
17 } while (cnt);
18

19 return result;
20 }

code/asm/array.c

(b) Optimized C code

Figure 3.25: Original and optimized code to compute element
� � �

of matrix product for variable
length arrays. The compiler performs these optimizations automatically.
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In many cases, the compiler can simplify the indexing computations for variable-sized arrays using the
same principles as we saw for fixed-size ones. For example, Figure 3.25(a) shows C code to compute
element

� � �
of the product of two variable-sized matrices A and B. In Figure 3.25(b) we show an optimized

version derived by reverse engineering the assembly code generated by compiling the original version. The
compiler is able to eliminate the integer multiplications i*n and j*n by exploiting the sequential access
pattern resulting from the loop structure. In this case, rather than generating a pointer variable Bptr, the
compiler creates an integer variable we call nTjPk, for “n Times j Plus k,” since its value equals n*j+k
relative to the original code. Initially nTjPk equals k, and it is incremented by n on each iteration.

The compiler generates code for the loop, where register %edx holds cnt, %ebx holds Aptr, %ecx holds
nTjPk, and %esi holds result. The code is as follows:

1 .L37: loop:

2 movl 12(%ebp),%eax Get B

3 movl (%ebx),%edi Get *Aptr

4 addl $4,%ebx Increment Aptr

5 imull (%eax,%ecx,4),%edi Multiply by B[nTjPk]

6 addl %edi,%esi Add to result

7 addl 24(%ebp),%ecx Add n to nTjPk

8 decl %edx Decrement cnt

9 jnz .L37 If cnt <> 0, goto loop

Observe that variables B and n must be retrieved from memory on each iteration. This is an example of
register spilling. There are not enough registers to hold all of the needed temporary data, and hence the
compiler must keep some local variables in memory. In this case the compiler chose to spill variables B and
n because they are read only—they do not change value within the loop. Spilling is a common problem for
IA32, since the processor has so few registers.

3.9 Heterogeneous Data Structures

C provides two mechanisms for creating data types by combining objects of different types: structures,
declared using the keyword struct, aggregate multiple objects into a single unit; unions, declared using
the keyword union, allow an object to be referenced using several different types.

3.9.1 Structures

The C struct declaration creates a data type that groups objects of possibly different types into a single
object. The different components of a structure are referenced by names. The implementation of structures
is similar to that of arrays in that all of the components of a structure are stored in a contiguous region
of memory, and a pointer to a structure is the address of its first byte. The compiler maintains information
about each structure type indicating the byte offset of each field. It generates references to structure elements
using these offsets as displacements in memory referencing instructions.

New to C?: Representing an object as a struct.
The struct data type constructor is the closest thing C provides to the objects of C++ and Java. It allows the
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programmer to keep information about some entity in a single data structure, and reference that information with
names.

For example, a graphics program might represent a rectangle as a structure:

struct rect {
int llx; /* X coordinate of lower-left corner */
int lly; /* Y coordinate of lower-left corner */
int color; /* Coding of color */
int width; /* Width (in pixels) */
int height; /* Height (in pixels) */

};

We could declare a variable r of type struct rect and set its field values as follows:

struct rect r;
r.llx = r.lly = 0;
r.color = 0xFF00FF;
r.width = 10;
r.height = 20;

where the expression r.llx selects field llx of structure r.

It is common to pass pointers to structures from one place to another rather than copying them. For example, the
following function computes the area of a rectangle, where a pointer to the rectangle struct is passed to the
function:

int area(struct rect *rp)
{

return (*rp).width * (*rp).height;
}

The expression (*rp).width dereferences the pointer and selects the width field of the resulting structure.
Parentheses are required, because the compiler would interpret the expression *rp.width as *(rp.width),
which is not valid. This combination of dereferencing and field selection is so common that C provides an alternative
notation using ->. That is, rp->width is equivalent to the expression (*rp).width. For example, we could
write a function that rotates a rectangle left by 90 degrees as

void rotate_left(struct rect *rp)
{

/* Exchange width and height */
int t = rp->height;
rp->height = rp->width;
rp->width = t;

}

The objects of C++ and Java are more elaborate than structures in C, in that they also associate a set of methods with
an object that can be invoked to perform computation. In C, we would simply write these as ordinary functions,
such as the functions area and rotate_left shown above. End.

As an example, consider the following structure declaration:
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struct rec {
int i;
int j;
int a[3];
int *p;

};

This structure contains four fields: two 4-byte int’s, an array consisting of three 4-byte int’s, and a 4-byte
integer pointer, giving a total of 24 bytes:

Offset 0 4 8 20
Contents i j a[0] a[1] a[2] p

Observe that array a is embedded within the structure. The numbers along the top of the diagram give the
byte offsets of the fields from the beginning of the structure.

To access the fields of a structure, the compiler generates code that adds the appropriate offset to the address
of the structure. For example, suppose variable r of type struct rec * is in register %edx. Then the
following code copies element r->i to element r->j:

1 movl (%edx),%eax Get r->i

2 movl %eax,4(%edx) Store in r->j

Since the offset of field i is 0, the address of this field is simply the value of r. To store into field j, the
code adds offset 4 to the address of r.

To generate a pointer to an object within a structure, we can simply add the field’s offset to the structure
address. For example, we can generate the pointer &(r->a[1]) by adding offset � � � � � � � � . For pointer
r in register %eax and integer variable i in register %edx, we can generate the pointer value &(r->a[i])
with the single instruction:

r in %eax, i in %edx

1 leal 8(%eax,%edx,4),%ecx %ecx = &r->a[i]

As a final example, the following code implements the statement:

r->p = &r->a[r->i + r->j];

starting with r in register %edx:

1 movl 4(%edx),%eax Get r->j

2 addl (%edx),%eax Add r->i

3 leal 8(%edx,%eax,4),%eax Compute &r->[r->i + r->j]

4 movl %eax,20(%edx) Store in r->p

As these examples show, the selection of the different fields of a structure is handled completely at compile
time. The machine code contains no information about the field declarations or the names of the fields.

Practice Problem 3.21:

Consider the following structure declaration:
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struct prob {
int *p;
struct {

int x;
int y;

} s;
struct prob *next;

};

This declaration illustrates that one structure can be embedded within another, just as arrays can be
embedded within structures, and arrays can be embedded within arrays.

The following procedure (with some expressions omitted) operates on this structure:

void sp_init(struct prob *sp)
{

sp->s.x = ________;
sp->p = ________;
sp->next = ________;

}

A. What are the offsets (in bytes) of the following fields:

p:

s.x:

s.y:

next:

B. How many total bytes does the structure require?

C. The compiler generates the following assembly code for the body of sp_init:

1 movl 8(%ebp),%eax
2 movl 8(%eax),%edx
3 movl %edx,4(%eax)
4 leal 4(%eax),%edx
5 movl %edx,(%eax)
6 movl %eax,12(%eax)

On the basis of this information, fill in the missing expressions in the code for sp_init.

3.9.2 Unions

Unions provide a way to circumvent the type system of C, allowing a single object to be referenced according
to multiple types. The syntax of a union declaration is identical to that for structures, but its semantics are
very different. Rather than having the different fields reference different blocks of memory, they all reference
the same block.

Consider the following declarations:
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struct S3 {
char c;
int i[2];
double v;

};

union U3 {
char c;
int i[2];
double v;

};

The offsets of the fields, as well as the total size of data types S3 and U3, are shown in the following table:

Type c i v Size
S3 0 4 12 20
U3 0 0 0 8

(We will see shortly why i has offset 4 in S3 rather than 1). For pointer p of type union U3 *, references
p->c, p->i[0], and p->v would all reference the beginning of the data structure. Observe also that the
overall size of a union equals the maximum size of any of its fields.

Unions can be useful in several contexts. However, they can also lead to nasty bugs, since they bypass the
safety provided by the C type system. One application is when we know in advance that the use of two
different fields in a data structure will be mutually exclusive. Then, declaring these two fields as part of a
union rather than a structure will reduce the total space allocated.

For example, suppose we want to implement a binary tree data structure where each leaf node has a double
data value, while each internal node has pointers to two children, but no data. If we declare this as

struct NODE {
struct NODE *left;
struct NODE *right;
double data;

};

then every node requires 16 bytes, with half the bytes wasted for each type of node. On the other hand, if
we declare a node as

union NODE {
struct {

union NODE *left;
union NODE *right;

} internal;
double data;

};

then every node will require just 8 bytes. If n is a pointer to a node of type union NODE *, we would ref-
erence the data of a leaf node as n->data, and the children of an internal node as n->internal.left
and n->internal.right.
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With this encoding, however, there is no way to determine whether a given node is a leaf or an internal node.
A common method is to introduce an additional tag field:

struct NODE {
int is_leaf;
union {

struct {
struct NODE *left;
struct NODE *right;

} internal;
double data;

} info;
};

where the field is_leaf is 1 for a leaf node and is 0 for an internal node. This structure requires a total of
12 bytes: 4 for is_leaf, and either 4 each for info.internal.leftand info.internal.right,
or 8 for info.data. In this case, the savings gain of using a union is small relative to the awkwardness of
the resulting code. For data structures with more fields, the savings can be more compelling.

Unions can also be used to access the bit patterns of different data types. For example, the following code
returns the bit representation of a float as an unsigned:

1 unsigned float2bit(float f)
2 {
3 union {
4 float f;
5 unsigned u;
6 } temp;
7 temp.f = f;
8 return temp.u;
9 };

In this code, we store the argument in the union using one data type, and access it using another. Interest-
ingly, the code generated for this procedure is identical to that for the following procedure:

1 unsigned copy(unsigned u)
2 {
3 return u;
4 }

The body of both procedures is just a single instruction:

1 movl 8(%ebp),%eax

This demonstrates the lack of type information in assembly code. The argument will be at offset 8 relative
to %ebp regardless of whether it is a float or an unsigned. The procedure simply copies its argument
as the return value without modifying any bits.

When using unions to combine data types of different sizes, byte ordering issues can become important. For
example, suppose we write a procedure that will create an 8-byte double using the bit patterns given by
two 4-byte unsigned’s:
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1 double bit2double(unsigned word0, unsigned word1)
2 {
3 union {
4 double d;
5 unsigned u[2];
6 } temp;
7

8 temp.u[0] = word0;
9 temp.u[1] = word1;

10 return temp.d;
11 }

On a little-endian machine such as IA32, argument word0will become the low-order four bytes of d, while
word1will become the high-order four bytes. On a big-endian machine, the role of the two arguments will
be reversed.

Practice Problem 3.22:

Consider the following union declaration.

union ele {
struct {

int *p;
int y;

} e1;
struct {

int x;
union ele *next;

} e2;
};

This declaration illustrates that structures can be embedded within unions.

The following procedure (with some expressions omitted) operates on a linked list having these unions
as list elements:

void proc (union ele *up)
{

up->__________ = *(up->__________) - up->__________;
}

A. What would be the offsets (in bytes) of the following fields:

e1.p:

e1.y:

e2.x:
e2.next:

B. How many total bytes would the structure require?

C. The compiler generates the following assembly code for the body of proc:
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1 movl 8(%ebp),%eax
2 movl 4(%eax),%edx
3 movl (%edx),%ecx
4 movl %ebp,%esp
5 movl (%eax),%eax
6 movl (%ecx),%ecx
7 subl %eax,%ecx
8 movl %ecx,4(%edx)

On the basis of this information, fill in the missing expressions in the code for proc. [Hint: Some
union references can have ambiguous interpretations. These ambiguities get resolved as you see
where the references lead. There is only one answer that does not perform any casting and does
not violate any type constraints.]

3.10 Alignment

Many computer systems place restrictions on the allowable addresses for the primitive data types, requiring
that the address for some type of object must be a multiple of some value

�
(typically 2, 4, or 8). Such

alignment restrictions simplify the design of the hardware forming the interface between the processor and
the memory system. For example, suppose a processor always fetches 8 bytes from memory with an address
that must be a multiple of 8. If we can guarantee that any double will be aligned to have its address be
a multiple of 8, then the value can be read or written with a single memory operation. Otherwise, we may
need to perform two memory accesses, since the object might be split across two 8-byte memory blocks.

The IA32 hardware will work correctly regardless of the alignment of data. However, Intel recommends that
data be aligned to improve memory system performance. Linux follows an alignment policy where 2-byte
data types (e.g., short) must have an address that is a multiple of 2, while any larger data types (e.g., int,
int *, float, and double) must have an address that is a multiple of 4. Note that this requirement
means that the least significant bit of the address of an object of type short must equal 0. Similarly, any
object of type int, or any pointer, must be at an address having the low-order two bits equal to 0.

Aside: Alignment with Microsoft Windows.
Microsoft Windows imposes a stronger alignment requirement—any

�
-byte (primitive) object must have an address

that is a multiple of
�

. In particular, it requires that the address of a double be a multiple of 8. This requirement
enhances the memory performance at the expense of some wasted space. The design decision made in Linux was
probably good for the i386, back when memory was scarce and memory buses were only 4 bytes wide. With modern
processors, Microsoft’s alignment is a better design decision.

The command line flag -malign-double causes GCC on Linux to use 8-byte alignment for data of type double.
This will lead to improved memory performance, but it can cause incompatibilities when linking with library code
that has been compiled assuming a 4-byte alignment. End Aside.

Alignment is enforced by making sure that every data type is organized and allocated in such a way that every
object within the type satisfies its alignment restrictions. The compiler places directives in the assembly code
indicating the desired alignment for global data. For example, the assembly code declaration of the jump
table on page 159 contains the following directive on line 2:
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.align 4

This ensures that the data following it (in this case the start of the jump table) will start with an address
that is a multiple of 4. Since each table entry is 4 bytes long, the successive elements will obey the 4-byte
alignment restriction.

Library routines that allocate memory, such as malloc, must be designed so that they return a pointer that
satisfies the worst-case alignment restriction for the machine it is running on, typically 4 or 8. For code
involving structures, the compiler may need to insert gaps in the field allocation to ensure that each structure
element satisfies its alignment requirement. The structure then has some required alignment for its starting
address.

For example, consider the following structure declaration:

struct S1 {
int i;
char c;
int j;

};

Suppose the compiler used the minimal 9-byte allocation, diagrammed as follows:

Offset 0 4 5
Contents i c j

Then it would be impossible to satisfy the 4-byte alignment requirement for both fields i (offset 0) and j
(offset 5). Instead, the compiler inserts a 3-byte gap (shown here as “XXX”) between fields c and j:

Offset 0 4 5 8
Contents i c XXX j

As a result, j has offset 8, and the overall structure size is 12 bytes. Furthermore, the compiler must ensure
that any pointer p of type struct S1 * satisfies a 4-byte alignment. Using our earlier notation, let pointer
p have value �

p. Then �
p must be a multiple of 4. This guarantees that both p->i (address � p) and p->j

(address � p � � ) will satisfy their 4-byte alignment requirements.

In addition, the compiler may need to add padding to the end of the structure so that each element in an
array of structures will satisfy its alignment requirement. For example, consider the following structure
declaration:

struct S2 {
int i;
int j;
char c;

};

If we pack this structure into 9 bytes, we can still satisfy the alignment requirements for fields i and j by
making sure that the starting address of the structure satisfies a 4-byte alignment requirement. Consider,
however, the following declaration:
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struct S2 d[4];

With the 9-byte allocation, it is not possible to satisfy the alignment requirement for each element of d,
because these elements will have addresses � d, � d �

�
, � d �

� � , and �
d
� � � .

Instead, the compiler will allocate 12 bytes for structure S1, with the final 3 bytes being wasted space:

Offset 0 4 8 9
Contents i j c XXX

That way the elements of d will have addresses �
d, � d �

� � , � d � � � , and �
d
� � 	

. As long as �
d is a

multiple of 4, all of the alignment restrictions will be satisfied.

Practice Problem 3.23:

For each of the following structure declarations, determine the offset of each field, the total size of the
structure, and its alignment requirement under Linux/IA32.

A. struct P1 { int i; char c; int j; char d; };

B. struct P2 { int i; char c; char d; int j; };

C. struct P3 { short w[3]; char c[3] };

D. struct P4 { short w[3]; char *c[3] };

E. struct P3 { struct P1 a[2]; struct P2 *p };

3.11 Putting it Together: Understanding Pointers

Pointers are a central feature of the C programming language. They provide a uniform way to provide remote
access to data structures. Pointers are a source of confusion for novice programmers, but the underlying
concepts are fairly simple. The code in Figure 3.26 lets us illustrate a number of these concepts.

� Every pointer has a type. This type indicates what kind of object the pointer points to. In our example
code, we see the following pointer types:

Pointer type Object type Pointers
int * int xp, ip[0], ip[1]
union uni * union uni up

Note in the preceding table, that we indicate the type of the pointer itself, as well as the type of the
object it points to. In general, if the object has type

�
, then the pointer has type *

�
. The special

void * type represents a generic pointer. For example, the malloc function returns a generic
pointer, which is converted to a typed pointer via a cast (line 21).

� Every pointer has a value. This value is an address of some object of the designated type. The special
NULL (0) value indicates that the pointer does not point anywhere. We will see the values of our
pointers shortly.
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1 struct str { /* Example Structure */
2 int t;
3 char v;
4 };
5

6 union uni { /* Example Union */
7 int t;
8 char v;
9 } u;

10

11 int g = 15;
12

13 void fun(int* xp)
14 {
15 void (*f)(int*) = fun; /* f is a function pointer */
16

17 /* Allocate structure on stack */
18 struct str s = {1,’a’}; /* Initialize structure */
19

20 /* Allocate union from heap */
21 union uni *up = (union uni *) malloc(sizeof(union uni));
22

23 /* Locally declared array */
24 int *ip[2] = {xp, &g};
25

26 up->v = s.v+1;
27

28 printf("ip = %p, *ip = %p, **ip = %d\n",
29 ip, *ip, **ip);
30 printf("ip+1 = %p, ip[1] = %p, *ip[1] = %d\n",
31 ip+1, ip[1], *ip[1]);
32 printf("&s.v = %p, s.v = ’%c’\n", &s.v, s.v);
33 printf("&up->v = %p, up->v = ’%c’\n", &up->v, up->v);
34 printf("f = %p\n", f);
35 if (--(*xp) > 0)
36 f(xp); /* Recursive call of fun */
37 }
38

39 int test()
40 {
41 int x = 2;
42 fun(&x);
43 return x;
44 }

Figure 3.26: Code illustrating use of pointers in C. In C, pointers can be generated to any data type.
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� Pointers are created with the & operator. This operator can be applied to any C expression that is
categorized as an lvalue, meaning an expression that can appear on the left side of an assignment.
Examples include variables and the elements of structures, unions, and arrays. In our example code,
we see this operator being applied to global variable g (line 24), to structure element s.v (line 32),
to union element up->v (line 33), and to local variable x (line 42).

� Pointers are dereferenced with the * operator. The result is a value having the type associated with
the pointer. We see dereferencing applied to both ip and *ip (line 29), to ip[1] (line 31), and xp
(line 35). In addition, the expression up->v (line 33) both derefences pointer up and selects field v.

� Arrays and pointers are closely related. The name of an array can be referenced (but not updated)
as if it were a pointer variable. Array referencing (e.g., a[3]) has the exact same effect as pointer
arithmetic and dereferencing (e.g., *(a+3)). We can see this in line 29, where we print the pointer
value of array ip, and reference its first (element 0) entry as *ip.

� Pointers can also point to functions. This provides a powerful capability for storing and passing
references to code, which can be invoked in some other part of the program. We see this with variable
f (line 15), which is declared to be a variable that points to a function taking an int * as argument
and returning void. The assignment makes f point to fun. When we later apply f (line 36), we are
making a recursive call.

New to C?: Function pointers.
The syntax for declaring function pointers is especially difficult for novice programmers to understand. For a
declaration such as

void (*f)(int*);

it helps to read it starting from the inside (starting with “ f”) and working outward. Thus, we see that f is a pointer,
as indicated by “(*f).” It is a pointer to a function that has a single int * as an argument as indicated by “
(*f)(int*).” Finally, we see that it is a pointer to a function that takes an int * as an argument and returns
void.

The parentheses around *f are required, because otherwise the declaration

void *f(int*);

would be read as

(void *) f(int*);

That is, it would be interpreted as a function prototype, declaring a function f that has an int * as its argument
and returns a void *.

Kernighan & Ritchie [41, Sect. 5.12] present a helpful tutorial on reading C declarations. End.

Our code contains a number of calls to printf, printing some of the pointers (using directive %p) and
values. When executed, it generates the following output:
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1 ip = 0xbfffefa8, *ip = 0xbfffefe4, **ip = 2 ip[0] = xp. *xp = x = 2

2 ip+1 = 0xbfffefac, ip[1] = 0x804965c, *ip[1] = 15 ip[1] = &g. g = 15

3 &s.v = 0xbfffefb4, s.v = ’a’ s in stack frame

4 &up->v = 0x8049760, up->v = ’b’ up points to area in heap

5 f = 0x8048414 f points to code for fun

6 ip = 0xbfffef68, *ip = 0xbfffefe4, **ip = 1 ip in new frame, x = 1

7 ip+1 = 0xbfffef6c, ip[1] = 0x804965c, *ip[1] = 15 ip[1] same as before

8 &s.v = 0xbfffef74, s.v = ’a’ s in new frame

9 &up->v = 0x8049770, up->v = ’b’ up points to new area in heap

10 f = 0x8048414 f points to code for fun

We see that the function is executed twice—first by the direct call from test (line 42), and second by
the indirect, recursive call (line 36). We can see that the printed values of the pointers all correspond
to addresses. Those starting with 0xbfffef point to locations on the stack, while the rest are part of
the global storage (0x804965c), part of the executable code (0x8048414), or locations on the heap
(0x8049760 and 0x8049770).

Array ip is instantiated twice—once for each call to fun. The second value (0xbfffef68) is smaller
than the first (0xbfffefa8), because the stack grows downward. The contents of the array, however, are
the same in both cases. Element 0 (*ip) is a pointer to variable x in the stack frame for test. Element 1
is a pointer to global variable g.

We can see that structure s is instantiated twice, both times on the stack, while the union pointed to by
variable up is allocated on the heap.

Finally, variable f is a pointer to function fun. In the disassembled code, we find the following as the initial
code for fun:

1 08048414 <fun>:
2 8048414: 55 push %ebp
3 8048415: 89 e5 mov %esp,%ebp
4 8048417: 83 ec 1c sub $0x1c,%esp
5 804841a: 57 push %edi

The value 0x8048414 printed for pointer f is exactly the address of the first instruction in the code for
fun.

New to C?: Passing parameters to a function.
Other languages, such as Pascal, provide two different ways to pass parameters to procedures—by value (identified
in Pascal by keyword var), where the caller provides the actual parameter value, and by reference, where the
caller provides a pointer to the value. In C, all parameters are passed by value, but we can simulate the effect of a
reference parameter by explicitly generating a pointer to a value and passing this pointer to a procedure. We saw
this in function fun (Figure 3.26) with the parameter xp. With the initial call fun(&x) (line 42), the function is
given a reference to local variable x in test. This variable is decremented by each call to fun (line 35), causing
the recursion to stop after two calls.

C++ reintroduced the concept of a reference parameter, but many feel this was a mistake. End.
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3.12 Life in the Real World: Using the GDB Debugger

The GNU debugger GDB provides a number of useful features to support the run-time evaluation and anal-
ysis of machine-level programs. With the examples and exercises in this book, we attempt to infer the
behavior of a program by just looking at the code. Using GDB, it becomes possible to study the behavior by
watching the program in action, while having considerable control over its execution.

Figure 3.27 shows examples of some GDB commands that help when working with machine-level, IA32
programs. It is very helpful to first run OBJDUMP to get a disassembled version of the program. Our
examples are based on running GDB on the file prog, described and disassembled on page 123. We start
GDB with the following command line:

unix> gdb prog

The general scheme is to set breakpoints near points of interest in the program. These can be set to just
after the entry of a function, or at a program address. When one of the breakpoints is hit during program
execution, the program will halt and return control to the user. From a breakpoint, we can examine different
registers and memory locations in various formats. We can also single-step the program, running just a few
instructions at a time, or we can proceed to the next breakpoint.

As our examples suggests, GDB has an obscure command syntax, but the online help information (invoked
within GDB with the help command) overcomes this shortcoming.

3.13 Out-of-Bounds Memory References and Buffer Overflow

We have seen that C does not perform any bounds checking for array references, and that local variables are
stored on the stack along with state information such as register values and return pointers. This combination
can lead to serious program errors, where the state stored on the stack gets corrupted by a write to an out-
of-bounds array element. When the program then tries to reload the register or execute a ret instruction
with this corrupted state, things can go seriously wrong.

A particularly common source of state corruption is known as buffer overflow. Typically some character
array is allocated on the stack to hold a string, but the size of the string exceeds the space allocated for the
array. This is demonstrated by the following program example.

1 /* Implementation of library function gets() */
2 char *gets(char *s)
3 {
4 int c;
5 char *dest = s;
6 while ((c = getchar()) != ’\n’ && c != EOF)
7 *dest++ = c;
8 *dest++ = ’\0’; /* Terminate String */
9 if (c == EOF)

10 return NULL;
11 return s;
12 }
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Command Effect
Starting and stopping

quit Exit GDB

run Run your program (give command line arguments here)
kill Stop your program

Breakpoints
break sum Set breakpoint at entry to function sum
break *0x80483c3 Set breakpoint at address 0x80483c3
delete 1 Delete breakpoint 1
delete Delete all breakpoints

Execution
stepi Execute one instruction
stepi 4 Execute four instructions
nexti Like stepi, but proceed through function calls
continue Resume execution
finish Run until current function returns

Examining code
disas Disassemble current function
disas sum Disassemble function sum
disas 0x80483b7 Disassemble function around address 0x80483b7
disas 0x80483b7 0x80483c7 Disassemble code within specified address range
print /x $eip Print program counter in hex

Examining data
print $eax Print contents of %eax in decimal
print /x $eax Print contents of %eax in hex
print /t $eax Print contents of %eax in binary
print 0x100 Print decimal representation of 0x100
print /x 555 Print hex representation of 555
print /x ($ebp+8) Print contents of %ebp plus 8 in hex
print *(int *) 0xbffff890 Print integer at address 0xbffff890
print *(int *) ($ebp+8) Print integer at address %ebp + 8
x/2w 0xbffff890 Examine two (4-byte) words starting at address 0xbffff890
x/20b sum Examine first 20 bytes of function sum

Useful information
info frame Information about current stack frame
info registers Values of all the registers
help Get information about GDB

Figure 3.27: Example GDB commands. These examples illustrate some of the ways GDB supports debug-
ging of machine-level programs.



196 CHAPTER 3. MACHINE-LEVEL REPRESENTATION OF PROGRAMS

Return address

buf

%ebpSaved %ebp

[3][2][1][0]

Stack frame
for echo

Stack frame
for caller

Figure 3.28: Stack organization for echo function. Character array buf is just below part of the saved
state. An out-of-bounds write to buf can corrupt the program state.

13

14 /* Read input line and write it back */
15 void echo()
16 {
17 char buf[4]; /* Way too small! */
18 gets(buf);
19 puts(buf);
20 }

The preceding code shows an implementation of the library function gets to demonstrate a serious problem
with this function. It reads a line from the standard input, stopping when either a terminating newline
character or some error condition is encountered. It copies this string to the location designated by argument
s, and terminates the string with a null character. We show the use of gets in the function echo, which
simply reads a line from standard input and echos it back to standard output.

The problem with gets is that it has no way to determine whether sufficient space has been allocated to
hold the entire string. In our echo example, we have purposely made the buffer very small—just four
characters long. Any string longer than three characters will cause an out-of-bounds write.

Examining a portion of the assembly code for echo shows how the stack is organized.

1 echo:
2 pushl %ebp Save %ebp on stack

3 movl %esp,%ebp
4 subl $20,%esp Allocate space on stack

5 pushl %ebx Save %ebx

6 addl $-12,%esp Allocate more space on stack

7 leal -4(%ebp),%ebx Compute buf as %ebp-4

8 pushl %ebx Push buf on stack

9 call gets Call gets

We can see in this example that the program allocates a total of 32 bytes (lines 4 and 6) for local storage.
However, the location of character array buf is computed as just four bytes below %ebp (line 7). Figure
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3.28 shows the resulting stack structure. As can be seen, any write to buf[4] through buf[7] will cause
the saved value of %ebp to be corrupted. When the program later attempts to restore this as the frame
pointer, all subsequent stack references will be invalid. Any write to buf[8] through buf[11] will
cause the return address to be corrupted. When the ret instruction is executed at the end of the function,
the program will “return” to the wrong address. As this example illustrates, buffer overflow can cause a
program to seriously misbehave.

Our code for echo is simple but sloppy. A better version involves using the function fgets, which includes
as an argument a count on the maximum number bytes to read. Homework problem 3.37 asks you to write
an echo function that can handle an input string of arbitrary length. In general, using gets or any function
that can overflow storage is considered a bad programming practice. The C compiler even produces the
following error message when compiling a file containing a call to gets: “the gets function is dangerous
and should not be used.”

Practice Problem 3.24:

Figure 3.29 shows a (low quality) implementation of a function that reads a line from standard input,
copies the string to newly allocated storage, and returns a pointer to the result.

Consider the following scenario. Proceduregetline is called with the return address equal to 0x8048643,
register %ebp equal to 0xbffffc94, register %esi equal to 0x1, and register %ebx equal to 0x2.
You type in the string “ 012345678901.” The program terminates with a segmentation fault. You run
GDB and determine that the error occurs during the execution of the ret instruction of getline.

A. Fill in the diagram that follows, indicating as much as you can about the stack just after executing
the instruction at line 6 in the disassembly. Label the quantities stored on the stack (e.g., “ Return
Address”) on the right, and their hexadecimal values (if known) within the box. Each box
represents 4 bytes. Indicate the position of %ebp.

08 04 86 43

bf ff fc 94

00 00 00 01

00 00 00 02

Return address

B. Modify your diagram to show the effect of the call to gets (line 10).

C. To what address does the program attempt to return?

D. What register(s) have corrupted value(s) when getline returns?

E. Besides the potential for buffer overflow, what two other things are wrong with the code for get-
line?
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code/asm/bufovf.c

1 /* This is very low quality code.
2 It is intended to illustrate bad programming practices.
3 See Practice Problem 3.24. */
4 char *getline()
5 {
6 char buf[8];
7 char *result;
8 gets(buf);
9 result = malloc(strlen(buf));

10 strcpy(result, buf);
11 return(result);
12 }

code/asm/bufovf.c

C Code

1 08048524 <getline>:
2 8048524: 55 push %ebp
3 8048525: 89 e5 mov %esp,%ebp
4 8048527: 83 ec 10 sub $0x10,%esp
5 804852a: 56 push %esi
6 804852b: 53 push %ebx

Diagram stack at this point

7 804852c: 83 c4 f4 add $0xfffffff4,%esp
8 804852f: 8d 5d f8 lea 0xfffffff8(%ebp),%ebx
9 8048532: 53 push %ebx

10 8048533: e8 74 fe ff ff call 80483ac <_init+0x50> gets

Modify diagram to show values at this point

Disassembly up through call to gets

Figure 3.29: C and disassembled code for Problem 3.24.
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A more pernicious use of buffer overflow is to get a program to perform a function that it would otherwise be
unwilling to do. This is one of the most common methods to attack the security of a system over a computer
network. Typically, the program is fed with a string that contains the byte encoding of some executable
code, called the exploit code, plus some extra bytes that overwrite the return pointer with a pointer to the
code in the buffer. The effect of executing the ret instruction is then to jump to the exploit code.

In one form of attack, the exploit code then uses a system call to start up a shell program, providing the
attacker with a range of operating system functions. In another form, the exploit code performs some
otherwise unauthorized task, repairs the damage to the stack, and then executes ret a second time, causing
an (apparently) normal return to the caller.

As an example, the famous Internet worm of November, 1988 used four different ways to gain access
to many of the computers across the Internet. One was a buffer overflow attack on the finger daemon
fingerd, which serves requests by the FINGER command. By invoking FINGER with an appropriate
string, the worm could make the daemon at a remote site have a buffer overflow and execute code that gave
the worm access to the remote system. Once the worm gained access to a system, it would replicate itself
and consume virtually all of the machine’s computing resources. As a consequence, hundreds of machines
were effectively paralyzed until security experts could determine how to eliminate the worm. The author of
the worm was caught and prosecuted. He was sentenced to three years probation, 400 hours of community
service, and a $10,500 fine. Even to this day, however, people continue to find security leaks in systems that
leave them vulnerable to buffer overflow attacks. This highlights the need for careful programming. Any
interface to the external environment should be made “bullet proof” so that no behavior by an external agent
can cause the system to misbehave.

Aside: Worms and viruses.
Both worms and viruses are pieces of code that attempt to spread themselves among computers. As described by
Spafford [75], a worm is a program that can run by itself and can propagate a fully working version of itself to other
machines. A virus is a piece of code that adds itself to other programs, including operating systems. It cannot run
independently. In the popular press, the term “virus” is used to refer to a variety of different strategies for spreading
attacking code among systems, and so you will hear people saying “virus” for what more properly should be called
a “worm.” End Aside.

In Problem 3.38, you can gain first-hand experience at mounting a buffer overflow attack. Note that we
do not condone using this or any other method to gain unauthorized access to a system. Breaking into
computer systems is like breaking into a building—it is a criminal act even when the perpetrator does not
have malicious intent. We give this problem for two reasons. First, it requires a deep understanding of
machine-language programming, combining such issues as stack organization, byte ordering, and instruc-
tion encoding. Second, by demonstrating how buffer overflow attacks work, we hope you will learn the
importance of writing code that does not permit such attacks.

Aside: Battling Microsoft via buffer overflow.
In July, 1999, Microsoft introduced an instant messaging (IM) system whose clients were compatible with the
popular America Online (AOL) IM servers. This allowed Microsoft IM users to chat with AOL IM users. However,
one month later, Microsoft IM users were suddenly and mysteriously unable to chat with AOL users. Microsoft
released updated clients that restored service to the AOL IM system, but within days these clients no longer worked
either. Somehow AOL was able to determine whether a user was running the AOL version of the IM client despite
Microsoft’s repeated attempts to have its client exactly mimic the AOL IM protocol.
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The AOL client code was vulnerable to a buffer overflow attack. Most likely this was an inadvertent “feature” in the
AOL code. AOL exploited this bug in its own code to detect imposters by attacking the client when the user logged
in. The AOL exploit code sampled a small number of locations in the memory image of the client, packed them
into a network packet, and sent them back to the server. If the server did not receive such a packet, or if the packet
it received did not match the expected “footprint” of the AOL client, then the server assumed the client was not an
AOL client and denied it access. So if other IM clients, such as Microsoft’s, wanted access to the AOL IM servers,
they would not only have to incorporate the buffer overflow bug that existed in AOL’s clients, but they would also
have to have identical binary code and data in the appropriate memory locations. But as soon as they matched these
locations and distributed new versions of their client programs to customers, AOL could simply change its exploit
code to sample different locations in the client’s memory image. This was clearly a war that the non-AOL clients
could never win!

The entire episode had a number of unusual twists and turns. Information about the client bug and AOL’s exploitation
of it was first divulged when someone posing to be an independent consultant by the name of Phil Bucking sent a
description via e-mail to Richard Smith, a noted security expert. Smith did some tracing and determined that the
e-mail actually originated from within Microsoft. Later Microsoft admitted that one of its employees had sent the
e-mail [52]. On the other side of the controversy, AOL never admitted to the bug nor their exploitation of it, even
though conclusive evidence was made public by Geoff Chapell of Australia.

So, who violated which code of conduct in this incident? First, AOL had no obligation to open its IM system to
non-AOL clients, so they were justified in blocking Microsoft. On the other hand, using buffer overflows is a tricky
business. A small bug would have crashed the client computers, and it made the systems more vulnerable to attacks
by external agents (although there is no evidence that this occurred). Microsoft would have done well to publicly
announce AOL’s intentional use of buffer overflow. However, their Phil Bucking subterfuge was clearly the wrong
way to spread this information, from both an ethical and a public relations point of view. End Aside.

3.14 *Floating-Point Code

The set of instructions for manipulating floating-point values is one of the least elegant features of the IA32
architecture. In the original Intel machines, floating point was performed by a separate coprocessor, a unit
with its own registers and processing capabilities that executes a subset of the instructions. This coprocessor
was implemented as a separate chip named the 8087, 80287, and i387, to accompany the processor chips
8086, 80286, and i386, respectively. During these product generations, chip capacity was insufficient to
include both the main processor and the floating-point coprocessor on a single chip. In addition, lower-
budget machines would omit floating-point hardware and simply perform the floating-point operations (very
slowly!) in software. Since the i486, floating point has been included as part of the IA32 CPU chip.

The original 8087 coprocessor was introduced to great acclaim in 1980. It was the first single-chip floating-
point unit (FPU), and the first implementation of what is now known as IEEE floating point. Operating as
a coprocessor, the FPU would take over the execution of floating-point instructions after they were fetched
by the main processor. There was minimal connection between the FPU and the main processor. Commu-
nicating data from one processor to the other required the sending processor to write to memory and the
receiving one to read it. Artifacts of that design remain in the IA32 floating-point instruction set today. In
addition, the compiler technology of 1980 was much less sophisticated than it is today. Many features of
IA32 floating point make it a difficult target for optimizing compilers.
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3.14.1 Floating-Point Registers

The floating-point unit contains eight floating-point registers, but unlike normal registers, these are treated
as a shallow stack. The registers are identified as %st(0), %st(1), and so on, up to %st(7), with
%st(0) being the top of the stack. When more than eight values are pushed onto the stack, the ones at the
bottom simply disappear.

Rather than directly indexing the registers, most of the arithmetic instructions pop their source operands
from the stack, compute a result, and then push the result onto the stack. Stack architectures were considered
a clever idea in the 1970s, since they provide a simple mechanism for evaluating arithmetic instructions,
and they allow a very dense coding of the instructions. With advances in compiler technology and with
the memory required to encode instructions no longer considered a critical resource, these properties are no
longer important. Compiler writers would be much happier with a larger, conventional set of floating-point
registers.

Aside: Other stack-based languages.
Stack-based interpreters are still commonly used as an intermediate representation between a high-level language
and its mapping onto an actual machine. Other examples of stack-based evaluators include Java byte code, the
intermediate format generated by Java compilers, and the Postscript page formatting language. End Aside.

Having the floating-point registers organized as a bounded stack makes it difficult for compilers to use these
registers for storing the local variables of a procedure that calls other procedures. For storing local integer
variables, we have seen that some of the general purpose registers can be designated as callee saved and
hence be used to hold local variables across a procedure call. Such a designation is not possible for an IA32
floating-point register, since its identity changes as values are pushed onto and popped from the stack. For
a push operation causes the value in %st(0) to now be in %st(1).

On the other hand, it might be tempting to treat the floating-point registers as a true stack, with each pro-
cedure call pushing its local values onto it. Unfortunately, this approach would quickly lead to a stack
overflow, since there is room for only eight values. Instead, compilers generate code that saves every local
floating-point value on the main program stack before calling another procedure and then retrieves them on
return. This generates memory traffic that can degrade program performance.

As noted in Section 2.4.6, the IA32 floating-point registers are all 80 bits wide. They encode numbers in
an extended-precision format as described in Homework Problem 2.58. All single and double-precision
numbers are converted to this format as they are loaded from memory into floating-point registers. The
arithmetic is always performed in extended precision. Numbers are converted from extended precision to
single- or double-precision format as they are stored in memory.

3.14.2 Stack Evaluation of Expressions

To understand how IA32 uses its floating-point registers as a stack, let us consider a more abstract version
of stack-based evaluation. Assume we have an arithmetic unit that uses a stack to hold intermediate re-
sults, having the instruction set illustrated in Figure 3.30. For example, so-called RPN (for Reverse Polish
Notation) pocket calculators provide this feature. In addition to the stack, this unit has a memory that can
hold values we will refer to by names such as a, b, and x. As Figure 3.30 indicates, we can push memory
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Instruction Effect
load S Push value at S onto stack
storep D Pop top stack element and store at D
neg Negate top stack element
addp Pop top two stack elements; Push their sum
subp Pop top two stack elements; Push their difference
multp Pop top two stack elements; Push their product
divp Pop top two stack elements; Push their ratio

Figure 3.30: Hypothetical stack instruction set. These instructions are used to illustrate stack-based
expression evaluation

values onto this stack with the load instruction. The storep operation pops the top element from the
stack and stores the result in memory. A unary operation such as neg (negation) uses the top stack element
as its argument and overwrites this element with the result. Binary operations such as addp and multp
use the top two elements of the stack as their arguments. They pop both arguments off the stack and then
push the result back onto the stack. We use the suffix ‘p’ with the store, add, subtract, multiply, and divide
instructions to emphasize the fact that these instructions pop their operands.

As an example, suppose we wish to evaluate the expression x = (a-b)/(-b+c). We could translate this
expression into the code that follows. Alongside each line of code, we show the contents of the floating-
point register stack. In keeping with our earlier convention, we show the stack as growing downward, so the
“top” of the stack is really at the bottom.

1 load c
�

%st(0)

2 load b
�
�

%st(0)

%st(1)

3 neg � �
�

%st(0)

%st(1)

4 addp � � ��� %st(0)

5 load b
��
� ���

%st(0)

%st(1)

6 load a
�
��
� ���

%st(0)

%st(1)

%st(2)

7 subp
� � �
� � ���

%st(0)

%st(1)

8 divp � � ��� � � � � � ��� � %st(0)

9 storep x

As this example shows, there is a natural recursive procedure for converting an arithmetic expression into
stack code. Our expression notation has four types of expressions having the following translation rules:

1. A variable reference of the form
�#


� . This is implemented with the instruction load
� 


� .

2. A unary operation of the form - � ��� � . This is implemented by first generating the code for � ��� �
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followed by a neg instruction.

3. A binary operation of the form � ��� � � + � ��� ��� , � ��� � � - � ��� ��� , � ��� � � * � ��� ��� , or � ��� � � / � ��� ��� .
This is implemented by generating the code for � ��� � � , followed by the code for � ��� � � , followed by
an addp, subp, multp, or divp instruction.

4. An assignment of the form
�#


� = � ��� � . This is implemented by first generating the code for � ��� � ,
followed by the storep

�#

� instruction.

As an example, consider the expression x = a-b/c. Since division has precedence over subtraction, this
expression can be parenthesized as x = a-(b/c). The recursive procedure would therefore proceed as
follows:

1. Generate code for � ��� � �� a-(b/c):

(a) Generate code for � ��� � � �� b/c:

i. Generate code for � ��� � � �� c using the instruction load c.

ii. Generate code for � ��� � � �� b, using the instruction load b.

iii. Generate instruction divp.

(b) Generate code for � ��� � � �� a, using the instruction load a.

(c) Generate instruction subp.

2. Generate instruction storep x.

The overall effect is to generate the following stack code:

1 load c
�

%st(0)

2 load b
�
�

%st(0)

%st(1)

3 divp
� � �

%st(0)

4 load a
�
� � �

%st(0)

%st(1)

5 subp
� � � � � � � %st(0)

6 storep x

Practice Problem 3.25:

Generate stack code for the expression x = a*b/c * -(a+b*c). Diagram the contents of the stack
for each step of your code. Remember to follow the C rules for precedence and associativity.

Stack evaluation becomes more complex when we wish to use the result of some computation multiple
times. For example, consider the expression x = (a*b)*(-(a*b)+c). For efficiency, we would like to
compute a*b only once, but our stack instructions do not provide a way to keep a value on the stack once
it has been used. With the set of instructions listed in Figure 3.30, we would therefore need to store the



204 CHAPTER 3. MACHINE-LEVEL REPRESENTATION OF PROGRAMS

intermediate result a+b in some memory location, say t, and retrieve this value for each use. This gives the
following code:

1 load c
�

%st(0)

2 load b
�
�

%st(0)

%st(1)

3 load a
�
�
�

%st(0)

%st(1)

%st(2)

4 multp
� � �
�

%st(0)

%st(1)

5 storep t
�

%st(0)

6 load t
� � �
�

%st(0)

%st(1)

7 neg
� � � � � �
�

%st(0)

%st(1)

8 addp
� � � � � � ��� %st(0)

9 load t
� � �

� � � � � � ���
%st(0)

%st(1)

10 multp
� � � � � � � � � � � ��� � %st(0)

11 storep x

This approach has the disadvantage of generating additional memory traffic, even though the register stack
has sufficient capacity to hold its intermediate results. The IA32 floating-point unit avoids this inefficiency
by introducing variants of the arithmetic instructions that leave their second operand on the stack, and that
can use an arbitrary stack value as their second operand. In addition, it provides an instruction that can
swap the top stack element with any other element. Although these extensions can be used to generate more
efficient code, the simple and elegant algorithm for translating arithmetic expressions into stack code is lost.

3.14.3 Floating-Point Data Movement and Conversion Operations

Floating-point registers are referenced with the notation %st(
�
), where

�
denotes the position relative to

the top of the stack. The value
�

can range between 0 and 7. Register %st(0) is the top stack element,
%st(1) is the second element, and so on. The top stack element can also be referenced as %st. When a
new value is pushed onto the stack, the value in register %st(7) is lost. When the stack is popped, the new
value in %st(7) is not predictable. Compilers must generate code that works within the limited capacity
of the register stack.

Figure 3.31 shows the set of instructions used to push values onto the floating-point register stack. The first
group of these read from a memory location, where the argument

� � �
� is a memory address given in one

of the memory operand formats listed in Figure 3.3. These instructions differ by the presumed format of
the source operand and hence the number of bytes that must be read from memory. Recall that the notation
M
� ��� � � � � indicates an access of

�
bytes with starting address

� � �
� . All of these instructions convert the

operand to extended-precision format before pushing it onto the stack. The final load instruction fld is
used to duplicate a stack value. That is, it pushes a copy of floating-point register %st(

�
) onto the stack.

For example, the instruction fld %st(0) pushes a copy of the top stack element onto the stack.
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Instruction Source format Source location
flds

� � �
� Single M �

��� � �
� �

fldl
� � �

� double M � ��� � � � �
fldt

� � �
� extended M

��� ��� � � � �
fildl

� � �
� integer M �

��� � �
� �

fld %st(
�
) extended %st(

�
)

Figure 3.31: Floating-point load instructions. All convert the operand to extended-precision format and
push it onto the register stack.

Instruction Pop (Y/N) Destination format Destination location
fsts

� � �
� N Single M �

��� � �
� �

fstps
� � �

� Y Single M �
��� � �

� �
fstl

� � �
� N Double M � ��� � � � �

fstpl
� � �

� Y Double M � ��� � � � �
fstt

� � �
� N Extended M

��� ��� � � � �
fstpt

� � �
� Y Extended M

��� ��� � � � �
fistl

� � �
� N integer M �

��� � �
� �

fistpl
� � �

� Y integer M �
��� � �

� �
fst %st(

�
) N Extended %st(

�
)

fstp %st(
�
) Y Extended %st(

�
)

Figure 3.32: Floating-point store instructions. All convert from extended-precision format to the destina-
tion format. Instructions with suffix ‘p’ pop the top element off the stack.
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Figure 3.32 shows the instructions that store the top stack element either in memory or in another floating-
point register. There are both “popping” versions that pop the top element off the stack (similar to the
storep instruction for our hypothetical stack evaluator), as well as nonpopping versions that leave the
source value on the top of the stack. As with the floating-point load instructions, different variants of the
instruction generate different formats for the result and therefore store different numbers of bytes. The first
group of these store the result in memory. The address is specified using any of the memory operand formats
listed in Figure 3.3. The second group copies the top stack element to some other floating-point register.

Practice Problem 3.26:

Assume for the following code fragment that register %eax contains an integer variable x and that the
top two stack elements correspond to variables a and b, respectively. Fill in the boxes to diagram the
stack contents after each instruction

1 testl %eax,%eax

2 jne L11
�
�

%st(0)

%st(1)

3 fstp %st(0) %st(0)

4 jmp L9
5 L11:

6 fstp %st(1) %st(0)

7 L9:

Write a C expression describing the contents of the top stack element at the end of this code sequence in
terms of x, a and b.

A final floating-point data movement operation allows the contents of two floating-point registers to be
swapped. The instruction fxch %st(

�
) exchanges the contents of floating-point registers %st(0) and

%st(
�
). The notation fxch written with no argument is equivalent to fxch %st(1), that is, swap the

top two stack elements.

3.14.4 Floating-Point Arithmetic Instructions

Figure 3.33 documents some of the most common floating-point arithmetic operations. Instructions in the
first group have no operands. They push the floating-point representation of some numerical constant onto
the stack. There are similar instructions for such constants as � , � , and

� ��� � � � . Instructions in the second
group have a single operand. The operand is always the top stack element, similar to the neg operation
of the hypothetical stack evaluator. They replace this element with the computed result. Instructions in the
third group have two operands. For each of these instructions, there are many different variants for how the
operands are specified, as will be discussed shortly. For noncommutative operations such as subtraction and
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Instruction Computation
fldz

�
fld1

�
fabs � � � �
fchs �

� �
fcos � ��� � �
fsin ����� � �
fsqrt � � �
fadd

� � � � � � �
fsub

� � � � � � �
fsubr

� � � � � � �
fdiv

� � � � � � �
fdivr

� � � � � � �
fmul

� � � � � � �

Figure 3.33: Floating-point arithmetic operations. Each of the binary operations has many variants.

Instruction Operand 1 Operand 2 (Format) Destination Pop %st(0) (Y/N)
fsubs

� � �
� %st(0) M �

��� � �
� � Single %st(0) N

fsubl
� � �

� %st(0) M � ��� � � � � Double %st(0) N
fsubt

� � �
� %st(0) M

��� ��� � � � � Extended %st(0) N
fisubl

� � �
� %st(0) M �

��� � �
� � integer %st(0) N

fsub %st(
�
),%st %st(

�
) %st(0) Extended %st(0) N

fsub %st,%st(
�
) %st(0) %st(

�
) Extended %st(

�
) N

fsubp %st,%st(
�
) %st(0) %st(

�
) Extended %st(

�
) Y

fsubp %st(0) %st(1) Extended %st(1) Y

Figure 3.34: Floating-point subtraction instructions. All store their results into a floating-point register in
extended-precision format. Instructions with suffix ‘p’ pop the top element off the stack.
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division there is both a forward (e.g., fsub) and a reverse (e.g., fsubr) version, so that the arguments can
be used in either order.

In Figure 3.33 we show just a single form of the subtraction operation fsub. In fact, this operation comes in
many different variants, as shown in Figure 3.34. All compute the difference of two operands:

� � � � � � �
and store the result in some floating-point register. Beyond the simple subp instruction we considered
for the hypothetical stack evaluator, IA32 has instructions that read their second operand from memory or
from some floating-point register other than %st(1). In addition, there are both popping and nonpopping
variants. The first group of instructions reads the second operand from memory, either in single-precision,
double-precision, or integer format. It then converts this to extended-precision format, subtracts it from
the top stack element, and overwrites the top stack element. These can be seen as a combination of a
floating-point load following by a stack-based subtraction operation.

The second group of subtraction instructions use the top stack element as one argument and some other
stack element as the other, but they vary in the argument ordering, the result destination, and whether
or not they pop the top stack element. Observe that the assembly code line fsubp is shorthand for
fsubp %st,%st(1). This line corresponds to the subp instruction of our hypothetical stack evalua-
tor. That is, it computes the difference between the top two stack elements, storing the result in %st(1),
and then popping %st(0) so that the computed value ends up on the top of the stack.

All of the binary operations listed in Figure 3.33 come in all of the variants listed for fsub in Figure
3.34. As an example, we can rewrite the code for the expression x = (a-b)*(-b+c) using the IA32
instructions. For exposition purposes we will still use symbolic names for memory locations and we assume
these are double-precision values.

1 fldl b
�

%st(0)

2 fchs � � %st(0)

3 faddl c � � ��� %st(0)

4 fldl a
��
� ���

%st(0)

%st(1)

5 fsubl b
� � �
� � ���

%st(0)

%st(1)

6 fmulp � � � � � � � � ��� � %st(0)

7 fstpl x

As another example, we can write the code for the expression x = (a*b)+(-(a*b)+c) as follows.
Observe how the instruction fld %st(0) is used to create two copies of a*b on the stack, avoiding the
need to save the value in a temporary memory location.
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1 fldl a
�

%st(0)

2 fmul b
� � � %st(0)

3 fld %st(0)
� � �
� � �

%st(0)

%st(1)

4 fchs
� � � � � �
� � �

%st(0)

%st(1)

5 faddl c
� � � � � � � �
� � �

%st(0)

%st(1)

6 fmulp � � � � � � � ��� � � � � � %st(0)

Practice Problem 3.27:

Diagram the stack contents after each step of the following code:

1 fldl b %st(0)

2 fldl a %st(0)

%st(1)

3 fmul %st(1),%st %st(0)

%st(1)

4 fxch %st(0)

%st(1)

5 fdivrl c %st(0)

%st(1)

6 fsubrp %st(0)

7 fstp x

Give an expression describing this computation.

3.14.5 Using Floating Point in Procedures

Floating-point arguments are passed to a calling procedure on the stack, just as are integer arguments. Each
parameter of type float requires 4 bytes of stack space, while each parameter of type double requires
8. For functions whose return values are of type float or double, the result is returned on the top of the
floating-point register stack in extended-precision format.

As an example, consider the following function
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1 double funct(double a, float x, double b, int i)
2 {
3 return a*x - b/i;
4 }

Arguments a, x, b, and i will be at byte offsets 8, 16, 20, and 28 relative to %ebp, respectively, as follows:

Offset 8 16 20 28
Contents a x b i

The body of the generated code, and the resulting stack values are as follows:

1 fildl 28(%ebp)
�

%st(0)

2 fdivrl 20(%ebp)
� � �

%st(0)

3 flds 16(%ebp)
�
� � �

%st(0)

%st(1)

4 fmull 8(%ebp)
� � �
� � �

%st(0)

%st(1)

5 fsubp %st,%st(1)
� � � � � � � %st(0)

Practice Problem 3.28:

For a function funct2 with arguments a, x, b, and i (and a different declaration than that of funct,
the compiler generates the following code for the function body:

1 movl 8(%ebp),%eax
2 fldl 12(%ebp)
3 flds 20(%ebp)
4 movl %eax,-4(%ebp)
5 fildl -4(%ebp)
6 fxch %st(2)
7 faddp %st,%st(1)
8 fdivrp %st,%st(1)
9 fld1

10 flds 24(%ebp)
11 faddp %st,%st(1)

The returned value is of type double. Write C code for funct2. Be sure to correctly declare the
argument types.
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Ordered Unordered
� � � Type Number of pops

fcoms
� � �

� fucoms
� � �

� M �
��� � �

� � Single 0
fcoml

� � �
� fucoml

� � �
� M � ��� � � � � Double 0

fcom %st(
�
) fucom %st(

�
) %st(

�
) Extended 0

fcom fucom %st(1) Extended 0
fcomps

� � �
� fucomps

� � �
� M �

��� � �
� � Single 1

fcompl
� � �

� fucompl
� � �

� M � ��� � � � � Double 1
fcomp %st(

�
) fucomp %st(

�
) %st(

�
) Extended 1

fcomp fucomp %st(1) Extended 1
fcompp fucompp %st(1) Extended 2

Figure 3.35: Floating-point comparison instructions. Ordered vs. unordered comparisons differ in their
treatment of NaN’s.

3.14.6 Testing and Comparing Floating-Point Values

Similar to the integer case, determining the relative values of two floating-point numbers involves using
a comparison instruction to set condition codes and then testing these condition codes. For floating point,
however, the condition codes are part of the floating-point status word, a 16-bit register that contains various
flags about the floating-point unit. This status word must be transferred to an integer word, and then the
particular bits must be tested.

There are a number of different floating-point comparison instructions as documented in Figure 3.35. All
of them perform a comparison between operands

� � �
and

� � � , where
� � �

is the top stack element. Each
line of the table documents two different comparison types: an ordered comparison used for comparisons
such as � and

�
, and an unordered comparison used for equality comparisons. The two comparisons differ

only in their treatment of NaN values, since there is no relative ordering between NaN’s and other values.
For example, if variable x is a NaN and variable y is some other value, then both expressions x < y and
x >= y should yield 0.

The various forms of comparison instructions also differ in the location of operand
� � � , analogous to the

different forms of floating-point load and floating-point arithmetic instructions. Finally, the various forms
differ in the number of elements popped off the stack after the comparison is completed. Instructions in the
first group shown in the table do not change the stack at all. Even for the case where one of the arguments
is in memory, this value is not on the stack at the end. Operations in the second group pop element

� � �
off

the stack. The final operation pops both
� � �

and
� � � off the stack.

The floating-point status word is transferred to an integer register with the fnstsw instruction. The operand
for this instruction is one of the 16-bit register identifiers shown in Figure 3.2, for example, %ax. The bits in
the status word encoding the comparison results are in bit positions 0, 2, and 6 of the high-order byte of the
status word. For example, if we use instruction fnstw %ax to transfer the status word, then the relevant
bits will be in %ah. A typical code sequence to select these bits is then:

1 fnstsw %ax Store floating point status word in %ax

2 andb $69,%ah Mask all but bits 0, 2, and 6

Note that
	�� ���

has bit representation
� � � � � � � � �
�

, that is, it has 1s in the three relevant bit positions. Figure
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� � � � � � � Binary Decimal
� � � � � � � � � � �

0
� � � � � � � � � �
�

1� � � � � � � � � � �
64

Unordered
� � � � � � � � �
�

69

Figure 3.36: Encoded results from floating-point comparison. The results are encoded in the high-order
byte of the floating-point status word after masking out all but bits 0, 2, and 6.

3.36 shows the possible values of byte %ah that would result from this code sequence. Observe that there
are only four possible outcomes for comparing operands

� � �
and

� � � : the first is either greater, less, equal,
or incomparable to the second, where the latter outcome only occurs when one of the values is a � 
 � .

As an example, consider the following procedure:

1 int less(double x, double y)
2 {
3 return x < y;
4 }

The compiled code for the function body is as follows:

1 fldl 16(%ebp) Push y

2 fcompl 8(%ebp) Compare y:x

3 fnstsw %ax Store floating point status word in %ax

4 andb $69,%ah Mask all but bits 0, 2, and 6

5 sete %al Test for comparison outcome of 0 (>)

6 movzbl %al,%eax Copy low order byte to result, and set rest to 0

Practice Problem 3.29:

Show how, by inserting a single line of assembly code into the preceding code sequence, you can imple-
ment the following function:

1 int greater(double x, double y)
2 {
3 return x > y;
4 }

This completes our coverage of assembly-level, floating-point programming with IA32. Even experienced
programmers find this code arcane and difficult to read. The stack-based operations, the awkwardness of
getting status results from the FPU to the main processor, and the many subtleties of floating-point compu-
tations combine to make the machine code lengthy and obscure. It is remarkable that the modern processors
manufactured by Intel and its competitors can achieve respectable performance on numeric programs given
the form in which they are encoded.
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3.15 *Embedding Assembly Code in C Programs

In the early days of computing, most programs were written in assembly code. Even large-scale operating
systems were written without the help of high-level languages. This becomes unmanageable for programs
of significant complexity. Since assembly code does not provide any form of type checking, it is very easy
to make basic mistakes, such as using a pointer as an integer rather than dereferencing the pointer. Even
worse, writing in assembly code locks the entire program into a particular class of machine. Rewriting an
assembly language program to run on a different machine can be as difficult as writing the entire program
from scratch.

Aside: Writing large programs in assembly code.
Frederick Brooks, Jr., a pioneer in computer systems wrote a fascinating account of the development of OS/360, an
early operating system for IBM machines [5] that still provides important object lessons today. He became a devoted
believer in high-level languages for systems programming as a result of this effort. Surprisingly, however, there is
an active group of programmers who take great pleasure in writing assembly code for IA32. They communicate
with one another via the Internet news group comp.lang.asm.x86. Most of them write computer games for the
DOS operating system. End Aside.

Early compilers for higher-level programming languages did not generate very efficient code and did not
provide access to the low-level object representations, as is often required by systems programmers. Pro-
grams requiring maximum performance or requiring access to object representations were still often written
in assembly code. Nowadays, however, optimizing compilers have largely removed performance optimiza-
tion as a reason for writing in assembly code. Code generated by a high quality compiler is generally as
good or even better than what can be achieved manually. The C language has largely eliminated machine
access as a reason for writing in assembly code. The ability to access low-level data representations through
unions and pointer arithmetic, along with the ability to operate on bit-level data representations, provide suf-
ficient access to the machine for most programmers. For example, almost every part of a modern operating
system such as Linux is written in C.

Nonetheless, there are times when writing in assembly code is the only option. This is especially true when
implementing an operating system. For example, there are a number of special registers storing process state
information that the operating system must access. There are either special instructions or special memory
locations for performing input and output operations. Even for application programmers, there are some
machine features, such as the values of the condition codes, that cannot be accessed directly in C.

The challenge then is to integrate code consisting mainly of C with a small amount written in assembly
language. One method is to write a few key functions in assembly code, using the same conventions for
argument passing and register usage as are followed by the C compiler. The assembly functions are kept
in a separate file, and the compiled C code is combined with the assembled assembly code by the linker.
For example, if file p1.c contains C code and file p2.s contains assembly code, then the compilation
command

unix> gcc -o p p1.c p2.s

will cause file p1.c to be compiled, file p2.s to be assembled, and the resulting object code to be linked
to form an executable program p.
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3.15.1 Basic Inline Assembly

With GCC, it is also possible to mix assembly with C code. Inline assembly allows the user to insert assembly
code directly into the code sequence generated by the compiler. Features are provided to specify instruction
operands and to indicate to the compiler which registers are being overwritten by the assembly instructions.
The resulting code is, of course, highly machine-dependent, since different types of machines do not have
compatible machine instructions. The asm directive is also specific to GCC, creating an incompatibility with
many other compilers. Nonetheless, this can be a useful way to keep the amount of machine-dependent code
to an absolute minimum.

Inline assembly is documented as part of the GCC information archive. Executing the command info gcc
on any machine with GCC installed will give a hierarchical document reader. Inline assembly is documented
by first following the link titled “C Extensions” and then the link titled “Extended Asm.” Unfortunately, the
documentation is somewhat incomplete and imprecise.

The basic form of inline assembly is to write code that looks like a procedure call:

asm( code-string );

The term code-string denotes an assembly code sequence given as a quoted string. The compiler will insert
this string verbatim into the assembly code being generated, and hence the compiler-supplied and the user-
supplied assembly will be combined. The compiler does not check the string for errors, and so the first
indication of a problem might be an error report from the assembler.

We illustrate the use of asm by an example where having access to the condition codes can be useful.
Consider functions with the following prototypes:

int ok_smul(int x, int y, int *dest);

int ok_umul(unsigned x, unsigned y, unsigned *dest);

Each is supposed to compute the product of arguments x and y and store the result in the memory location
specified by argument dest. As return values, they should return 0 when the multiplication overflows and
1 when it does not. We have separate functions for signed and unsigned multiplication, since they overflow
under different circumstances.

Examining the documentation for the IA32 multiply instructions mul and imul, we see that both set the
carry flag CF when they overflow. Examining Figure 3.10, we see that the instruction setae can be used
to set the low-order byte of a register to 0 when this flag is set and to 1 otherwise. Thus, we wish to insert
this instruction into the sequence generated by the compiler.

In an attempt to use the least amount of both assembly code and detailed analysis, we attempt to implement
ok_smul with the following code:

code/asm/okmul.c

1 /* First attempt. Does not work */
2 int ok_smul1(int x, int y, int *dest)
3 {
4 int result = 0;
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5

6 *dest = x*y;
7 asm("setae %al");
8 return result;
9 }

code/asm/okmul.c

The strategy here is to exploit the fact that register %eax is used to store the return value. Assuming the
compiler uses this register for variable result, the first line will set the register to 0. The inline assembly
will insert code that sets the low-order byte of this register appropriately, and the register will be used as the
return value.

Unfortunately, GCC has its own ideas of code generation. Instead of setting register %eax to 0 at the
beginning of the function, the generated code does so at the very end, and so the function always returns 0.
The fundamental problem is that the compiler has no way to know what the programmer’s intentions are,
and how the assembly statement should interact with the rest of the generated code.

By a process of trial and error (we will develop more systematic approaches shortly), we were able to
generate code that works, but that also is less than ideal:

code/asm/okmul.c

1 /* Second attempt. Works in limited contexts */
2 int dummy = 0;
3

4 int ok_smul2(int x, int y, int *dest)
5 {
6 int result;
7

8 *dest = x*y;
9 result = dummy;

10 asm("setae %al");
11 return result;
12 }

code/asm/okmul.c

This code uses the same strategy as before, but it reads a global variable dummy to initialize result to 0.
Compilers are typically more conservative about generating code involving global variables, and therefore
less likely to rearrange the ordering of the computations.

The preceding code depends on quirks of the compiler to get proper behavior. In fact, it only works when
compiled with optimization enabled (command line flag -O). When compiled without optimization, it stores
result on the stack and retrieves its value just before returning, overwriting the value set by the setae
instruction. The compiler has no way of knowing how the inserted assembly language relates to the rest of
the code, because we provided the compiler no such information.
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3.15.2 Extended Form of asm

GCC provides an extended version of the asm that allows the programmer to specify which program values
are to be used as operands to an assembly code sequence and which registers are overwritten by the assem-
bly code. With this information the compiler can generate code that will correctly set up the required source
values, execute the assembly instructions, and make use of the computed results. It will also have informa-
tion it requires about register usage so that important program values are not overwritten by the assembly
code instructions.

The general syntax of an extended assembly sequence is

asm( code-string
�
: output-list

�
: input-list

�
: overwrite-list

� � �
);

where the square brackets denote optional arguments. The declaration contains a string describing the
assembly code sequence, followed by optional lists of outputs (i.e., results generated by the assembly code),
inputs (i.e., source values for the assembly code), and registers that are overwritten by the assembly code.
These lists are separated by the colon (‘:’) character. As the square brackets show, we only include lists up
to the last nonempty list.

The syntax for the code string is reminiscent of that for the format string in a printf statement. It consists
of a sequence of assembly code instructions separated by the semicolon (‘;’) character. Input and output
operands are denoted by references %0, %1, and so on, up to possibly %9. Operands are numbered, according
to their ordering first in the output list and then in the input list. Register names such as “%eax” must be
written with an extra ‘%’ symbol, such as “%%eax.”

The following is a better implementation of ok_smul using the extended assembly statement to indicate to
the compiler that the assembly code generates the value for the variable result:

code/asm/okmul.c

1 /* Uses the extended assembly statement to get reliable code */
2 int ok_smul3(int x, int y, int *dest)
3 {
4 int result;
5

6 *dest = x*y;
7

8 /* Insert the following assembly code:
9 setae %bl # Set low-order byte

10 movzbl %bl, result # Zero extend to be result
11 */
12 asm("setae %%bl; movzbl %%bl,%0"
13 : "=r" (result) /* Output */
14 : /* No inputs */
15 : "%ebx" /* Overwrites */
16 );
17

18 return result;
19 }
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code/asm/okmul.c

The first assembly instruction stores the test result in the single-byte register %bl. The second instruction
then zero-extends and copies the value to whatever register the compiler chooses to hold result, indicated
by operand %0. The output list consists of pairs of values separated by spaces. (In this example there is
only a single pair). The first element of the pair is a string indicating the operand type, where ‘r’ indicates
an integer register and ‘=’ indicates that the assembly code assigns a value to this operand. The second
element of the pair is the operand enclosed in parentheses. It can be any assignable value (known in C as
an lvalue). The compiler will generate the necessary code sequence to perform the assignment. The input
list has the same general format, where the operand can be any C expression. The compiler will generate
the necessary code to evaluate the expression. The overwrite list simply gives the names of the registers (as
quoted strings) that are overwritten.

The preceding code works regardless of the compilation flags. As this example illustrates, it may take a
little creative thinking to write assembly code that will allow the operands to be described in the required
form. For example, there are no direct ways to specify a program value to use as the destination operand for
the setae instruction, since the operand must be a single byte. Instead, we write a code sequence based on
a specific register and then use an extra data movement instruction to copy the resulting value to some part
of the program state.

Practice Problem 3.30:

GCC provides a facility for extended-precision arithmetic. This can be used to implement function
ok_smul, with the advantage that it is portable across machines. A variable declared as type “long long”
will have twice the size of normal long variable. Thus, the statement

long long prod = (long long) x * y;

will compute the full 64-bit product of x and y. Using this facility, write a version of ok_smul that
does not use any asm statements.

One would expect the same code sequence could be used for ok_umul, but GCC uses the imull (signed
multiply) instruction for both signed and unsigned multiplication. This generates the correct value for
either product, but it sets the carry flag according to the rules for signed multiplication. We therefore need
to include an assembly-code sequence that explicitly performs unsigned multiplication using the mull
instruction as documented in Figure 3.9, as follows:

code/asm/okmul.c

1 /* Uses the extended assembly statement */
2 int ok_umul(unsigned x, unsigned y, unsigned *dest)
3 {
4 int result;
5

6 /* Insert the following assembly code:
7 movl x,%eax # Get x
8 mull y # Unsigned multiply by y
9 movl %eax, *dest # Store low-order 4 bytes at dest
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10 setae %dl # Set low-order byte
11 movzbl %dl, result # Zero extend to be result
12 */
13 asm("movl %2,%%eax; mull %3; movl %%eax,%0;
14 setae %%dl; movzbl %%dl,%1"
15 : "=r" (*dest), "=r" (result) /* Outputs */
16 : "r" (x), "r" (y) /* Inputs */
17 : "%eax", "%edx" /* Overwrites */
18 );
19

20 return result;
21 }

code/asm/okmul.c

Recall that the mull instruction requires one of its arguments to be in register %eax and is given the second
argument as an operand. We indicate this in the asm statement by using a movl to move program value x to
%eax and indicating that program value y should be the argument for the mull instruction. The instruction
then stores the 8-byte product in two registers with %eax holding the low-order 4 bytes and %edx holding
the high-order bytes. We then use register %edx to construct the return value. As this example illustrates,
comma (‘ ,’) characters are used to separate pairs of operands in the input and output lists, and register
names in the overwrite list. Note that we were able to specify *dest as an output of the second movl
instruction, since this is an assignable value. The compiler then generates the correct machine code to store
the value in %eax at this memory location.

To see how the compiler generates code in connection with an asm statement, here is the code generated
for ok_umul:

Set up asm inputs

1 movl 8(%ebp),%ecx Load x into %ecx

2 movl 12(%ebp),%ebx Load y into %ebx

3 movl 16(%ebp),%esi Load dest into %esi

The following instruction was generated by asm.

Input registers: %ecx for x, %ebx for y

Output registers: %ecx for product, %ebx for result

4 movl %ecx,%eax; mull %ebx; movl %eax,%ecx;
5 setae %dl; movzbl %dl,%ebx

Process asm outputs

6 movl %ecx,(%esi) Store product at dest

7 movl %ebx,%eax Set result as return value

Lines 1–3 of this code fetch the procedure arguments and store them in registers. Note that it does not
use registers %eax or %edx, since we have declared that these will be overwritten. Our inline assembly
statement appears as lines 4 and 5, but with register names substituted for the arguments. In particular,
it will use registers %ecx for argument %2 (x), and %ebx for argument %3 (y). The product will be held
temporarily in %ecx, while it uses register %ebx for argument %1 (result). Line 6 then stores the product
at dest, completing the processing of argument %0 (*dest). Line 7 copies result to register %eax as
the return value. Thus, the compiler generated not only the code indicated by our asm statement, but code
to set up the statement inputs (lines 1–3) and to make use of the outputs (lines 6–7).
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Although the syntax of the asm statement is somewhat arcane, and its use makes the code less portable,
this statement can be very useful for writing programs that accesses machine-level features using a minimal
amount of assembly code. We have found that a certain amount of trial and error is required to get code
that works. The best strategy is to compile the code with the -S switch and then examine the generated
assembly code to see if it will have the desired effect. The code should be tested with different settings of
switches such as with and without the -O flag.

3.16 Summary

In this chapter, we have peered beneath the layer of abstraction provided by a high-level language to get
a view of machine-level programming. By having the compiler generate an assembly-code representation
of the machine-level program, we gain insights into both the compiler and its optimization capabilities,
along with the machine, its data types, and its instruction set. In Chapter 5, we will see that knowing the
characteristics of a compiler can help when trying to write programs that will have efficient mappings onto
the machine. We have also seen examples where the high-level language abstraction hides important details
about the operation of a program. For example, the behavior of floating-point code can depend on whether
values are held in registers or in memory. In Chapter 7, we will see many examples where we need to
know whether a program variable is on the run-time stack, in some dynamically allocated data structure,
or in some global storage locations. Understanding how programs map onto machines makes it easier to
understand the difference between these kinds of storage.

Assembly language is very different from C code. In assembly language programs, there is minimal dis-
tinction between different data types. The program is expressed as a sequence of instructions, each of
which performs a single operation. Parts of the program state, such as registers and the run-time stack, are
directly visible to the programmer. Only low-level operations are provided to support data manipulation
and program control. The compiler must use multiple instructions to generate and operate on different data
structures and to implement control constructs such as conditionals, loops, and procedures. We have covered
many different aspects of C and how it gets compiled. We have seen the that the lack of bounds checking in
C makes many programs prone to buffer overflows, and this has made many systems vulnerable to attacks
by malicious intruders.

We have only examined the mapping of C onto IA32, but much of what we have covered is handled in a
similar way for other combinations of language and machine. For example, compiling C++ is very similar to
compiling C. In fact, early implementations of C++ simply performed a source-to-source conversion from
C++ to C and generated object code by running a C compiler on the result. C++ objects are represented
by structures, similar to a C struct. Methods are represented by pointers to the code implementing
the methods. By contrast, Java is implemented in an entirely different fashion. The object code of Java is a
special binary representation known as Java byte code. This code can be viewed as a machine-level program
for a virtual machine. As its name suggests, this machine is not implemented directly in hardware. Instead,
software interpreters process the byte code, simulating the behavior of the virtual machine. The advantage
of this approach is that the same Java byte code can be executed on many different machines, whereas the
machine code we have considered runs only under IA32.
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Bibliographic Notes

The best references on IA32 are from Intel. Two useful references are part of their series on software devel-
opment. The basic architecture manual [18] gives an overview of the architecture from the perspective of an
assembly-language programmer, and the instruction set reference manual [19] gives detailed descriptions
of the different instructions. These references contain far more information than is required to understand
Linux code. In particular, with flat mode addressing, all of the complexities of the segmented addressing
scheme can be ignored.

The GAS format used by the Linux assembler is very different from the standard format used in Intel docu-
mentation and by other compilers (particularly those produced by Microsoft). One main distinction is that
the source and destination operands are given in the opposite order

On a Linux machine, running the command info as will display information about the assembler. One
of the subsections documents machine-specific information, including a comparison of GAS with the more
standard Intel notation. Note that GCC refers to these machines as “i386”—it generates code that could
even run on a 1985 vintage machine.

Muchnick’s book on compiler design [56] is considered the most comprehensive reference on code opti-
mization techniques. It covers many of the techniques we discuss here, such as register usage conventions
and the advantages of generating code for loops based on their do-while form.

Much has been written about the use of buffer overflow to attack systems over the Internet. Detailed analyses
of the 1988 Internet worm have been published by Spafford [75] as well as by members of the team at MIT
who helped stop its spread [26]. Since then, a number of papers and projects have generated about both
creating and preventing buffer overflow attacks, such as [20].

Homework Problems

Homework Problem 3.31 [Category 1]:

You are given the information that follows. A function with prototype

int decode2(int x, int y, int z);

is compiled into assembly code. The body of the code is as follows:

1 movl 16(%ebp),%eax
2 movl 12(%ebp),%edx
3 subl %eax,%edx
4 movl %edx,%eax
5 imull 8(%ebp),%edx
6 sall $31,%eax
7 sarl $31,%eax
8 xorl %edx,%eax

Parameters x, y, and z are stored at memory locations with offsets 8, 12, and 16 relative to the address in
register %ebp. The code stores the return value in register %eax.



3.16. SUMMARY 221

Write C code for decode2 that will have an effect equivalent to our assembly code. You can test your
solution by compiling your code with the -S switch. Your compiler may not generate identical code, but it
should be functionally equivalent.

Homework Problem 3.32 [Category 2]:

The following C code is almost identical to that in Figure 3.12:

1 int absdiff2(int x, int y)
2 {
3 int result;
4

5 if (x < y)
6 result = y-x;
7 else
8 result = x-y;
9 return result;

10 }

When compiled, however, it gives a different form of assembly code:

1 movl 8(%ebp),%edx
2 movl 12(%ebp),%ecx
3 movl %edx,%eax
4 subl %ecx,%eax
5 cmpl %ecx,%edx
6 jge .L3
7 movl %ecx,%eax
8 subl %edx,%eax
9 .L3:

A. What subtractions are performed when � � � ? When ��� � ?

B. In what way does this code deviate from the standard implementation of if-else described previously?

C. Using C syntax (including goto’s), show the general form of this translation.

D. What restrictions must be imposed on the use of this translation to guarantee that it has the behavior
specified by the C code?

Homework Problem 3.33 [Category 2]:

The code that follows shows an example of branching on an enumerated type value in a switch statement.
Recall that enumerated types in C are simply a way to introduce a set of names having associated integer
values. By default, the values assigned to the names go from 0 upward. In our code, the actions associated
with the different case labels have been omitted.

/* Enumerated type creates set of constants numbered 0 and upward */
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The jump targets

Arguments p1 and p2 are in registers %ebx and %ecx.

1 .L15: MODE_A

2 movl (%ecx),%edx
3 movl (%ebx),%eax
4 movl %eax,(%ecx)
5 jmp .L14
6 .p2align 4,,7 Inserted to optimize cache performance

7 .L16: MODE_B

8 movl (%ecx),%eax
9 addl (%ebx),%eax

10 movl %eax,(%ebx)
11 movl %eax,%edx
12 jmp .L14
13 .p2align 4,,7 Inserted to optimize cache performance

14 .L17: MODE_C

15 movl $15,(%ebx)
16 movl (%ecx),%edx
17 jmp .L14
18 .p2align 4,,7 Inserted to optimize cache performance

19 .L18: MODE_D

20 movl (%ecx),%eax
21 movl %eax,(%ebx)
22 .L19: MODE_E

23 movl $17,%edx
24 jmp .L14
25 .p2align 4,,7 Inserted to optimize cache performance

26 .L20:
27 movl $-1,%edx
28 .L14: default

29 movl %edx,%eax Set return value

Figure 3.37: Assembly code for Problem 3.33. This code implements the different branches of a switch
statement.
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typedef enum {MODE_A, MODE_B, MODE_C, MODE_D, MODE_E} mode_t;

int switch3(int *p1, int *p2, mode_t action)
{

int result = 0;
switch(action) {
case MODE_A:

case MODE_B:

case MODE_C:

case MODE_D:

case MODE_E:

default:

}
return result;

}

The part of the generated assembly code implementing the different actions is shown shown in Figure
3.37. The annotations indicate the values stored in the registers and the case labels for the different jump
destinations.

A. What register corresponds to program variable result?

B. Fill in the missing parts of the C code. Watch out for cases that fall through.

Homework Problem 3.34 [Category 2]:

Switch statements are particularly challenging to reverse engineer from the object code. In the following
procedure, the body of the switch statement has been removed.

1 int switch_prob(int x)
2 {
3 int result = x;
4

5 switch(x) {
6

7 /* Fill in code here */
8 }
9

10 return result;
11 }
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1 080483c0 <switch_prob>:
2 80483c0: 55 push %ebp
3 80483c1: 89 e5 mov %esp,%ebp
4 80483c3: 8b 45 08 mov 0x8(%ebp),%eax
5 80483c6: 8d 50 ce lea 0xffffffce(%eax),%edx
6 80483c9: 83 fa 05 cmp $0x5,%edx
7 80483cc: 77 1d ja 80483eb <switch_prob+0x2b>
8 80483ce: ff 24 95 68 84 04 08 jmp *0x8048468(,%edx,4)
9 80483d5: c1 e0 02 shl $0x2,%eax

10 80483d8: eb 14 jmp 80483ee <switch_prob+0x2e>
11 80483da: 8d b6 00 00 00 00 lea 0x0(%esi),%esi
12 80483e0: c1 f8 02 sar $0x2,%eax
13 80483e3: eb 09 jmp 80483ee <switch_prob+0x2e>
14 80483e5: 8d 04 40 lea (%eax,%eax,2),%eax
15 80483e8: 0f af c0 imul %eax,%eax
16 80483eb: 83 c0 0a add $0xa,%eax
17 80483ee: 89 ec mov %ebp,%esp
18 80483f0: 5d pop %ebp
19 80483f1: c3 ret
20 80483f2: 89 f6 mov %esi,%esi

Figure 3.38: Disassembled code for Problem 3.34.

Figure 3.38 shows the disassembled object code for the procedure. We are only interested in the part of
code shown on lines 4 through 16. We can see on line 4 that parameter x (at offset 8 relative to %ebp) is
loaded into register %eax, corresponding to program variable result. The “lea 0x0(%esi),%esi”
instruction on line 11 is a nop instruction inserted to make the instruction on line 12 start on an address that
is a multiple of 16.

The jump table resides in a different area of memory. Using the debugger GDB we can examine the six
4-byte words of memory starting at address 0x8048468 with the command x/6w 0x8048468. GDB
prints the following:

(gdb) x/6w 0x8048468
0x8048468: 0x080483d5 0x080483eb 0x080483d5 0x080483e0
0x8048478: 0x080483e5 0x080483e8
(gdb)

Fill in the body of the switch statement with C code that will have the same behavior as the object code.

Homework Problem 3.35 [Category 2]:

The code generated by the C compiler for var_prod_ele (Figure 3.25(b)) is not optimal. Write code for
this function based on a hybrid of procedures fix_prod_ele_opt (Figure 3.24) and var_prod_ele_opt
(Figure 3.25) that is correct for all values of n, but compiles into code that can keep all of its temporary data
in registers.

Recall that the processor only has six registers available to hold temporary data, since registers %ebp and
%esp cannot be used for this purpose. One of these registers must be used to hold the result of the multiply
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instruction. Hence, you must reduce the number of local variables in the loop from six (result, Aptr, B,
nTjPk, n, and cnt) to five.

Homework Problem 3.36 [Category 2]:

You are charged with maintaining a large C program, and you come across the following code:

im/code/asm/structprob-ans.c

1 typedef struct {
2 int left;
3 a_struct a[CNT];
4 int right;
5 } b_struct;
6

7 void test(int i, b_struct *bp)
8 {
9 int n = bp->left + bp->right;

10 a_struct *ap = &bp->a[i];
11 ap->x[ap->idx] = n;
12 }

im/code/asm/structprob-ans.c

Unfortunately, the ‘.h’ file defining the compile-time constant CNT and the structure a_struct are in
files for which you do not have access privileges. Fortunately, you have access to a ‘.o’ version of code,
which you are able to disassemble with the objdump program, yielding the disassembly shown in Figure
3.39.

Using your reverse engineering skills, deduce the following:

A. The value of CNT.

B. A complete declaration of structure a_struct. Assume that the only fields in this structure are idx
and x.

Homework Problem 3.37 [Category 1]:

Write a function good_echo that reads a line from standard input and writes it to standard output. Your
implementation should work for an input line of arbitrary length. You may use the library function fgets,
but you must make sure your function works correctly even when the input line requires more space than
you have allocated for your buffer. Your code should also check for error conditions and return when one is
encounted. You should refer to the definitions of the standard I/O functions for documentation [32, 41].

Homework Problem 3.38 [Category 3]:

In this problem, you will mount a buffer overflow attack on your own program. As stated earlier, we do not
condone using this or any other form of attack to gain unauthorized access to a system, but by doing this
exercise, you will learn a lot about machine-level programming.

Download the file bufbomb.c from the CS:APP website and compile it to create an executable program.
In bufbomb.c, you will find the following functions:
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1 int getbuf()
2 {
3 char buf[12];
4 getxs(buf);
5 return 1;
6 }
7

8 void test()
9 {

10 int val;
11 printf("Type Hex string:");
12 val = getbuf();
13 printf("getbuf returned 0x%x\n", val);
14 }

The function getxs (also in bufbomb.c) is similar to the library gets, except that it reads characters
encoded as pairs of hex digits. For example, to give it a string “0123,” the user would type in the string
“30 31 32 33.” The function ignores blank characters. Recall that decimal digit � has ASCII represen-
tation 0x3 � .

A typical execution of the program is as follows:

unix> ./bufbomb
Type Hex string: 30 31 32 33
getbuf returned 0x1

Looking at the code for the getbuf function, it seems quite apparent that it will return value
�

whenever it
is called. It appears as if the call to getxs has no effect. Your task is to make getbuf return �

� ����� � � � � �
(0xdeadbeef) to test, simply by typing an appropriate hexadecimal string to the prompt.

The following suggestions may help you solve the problem:

� Use OBJDUMP to create a disassembled version of bufbomb. Study this closely to determine how
the stack frame for getbuf is organized and how overflowing the buffer will alter the saved program
state.

� Run your program under GDB. Set a breakpoint within getbuf and run to this breakpoint. Determine
such parameters as the value of %ebp and the saved value of any state that will be overwritten when
you overflow the buffer.

� Determining the byte encoding of instruction sequences by hand is tedious and prone to errors. You
can let tools do all of the work by writing an assembly code file containing the instructions and data
you want to put on the stack. Assemble this file with GCC and disassemble it with OBJDUMP. You
should be able to get the exact byte sequence that you will type at the prompt. OBJDUMP will produce
some pretty strange looking assembly instructions when it tries to disassemble the data in your file,
but the hexadecimal byte sequence should be correct.
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1 00000000 <test>:
2 0: 55 push %ebp
3 1: 89 e5 mov %esp,%ebp
4 3: 53 push %ebx
5 4: 8b 45 08 mov 0x8(%ebp),%eax
6 7: 8b 4d 0c mov 0xc(%ebp),%ecx
7 a: 8d 04 80 lea (%eax,%eax,4),%eax
8 d: 8d 44 81 04 lea 0x4(%ecx,%eax,4),%eax
9 11: 8b 10 mov (%eax),%edx

10 13: c1 e2 02 shl $0x2,%edx
11 16: 8b 99 b8 00 00 00 mov 0xb8(%ecx),%ebx
12 1c: 03 19 add (%ecx),%ebx
13 1e: 89 5c 02 04 mov %ebx,0x4(%edx,%eax,1)
14 22: 5b pop %ebx
15 23: 89 ec mov %ebp,%esp
16 25: 5d pop %ebp
17 26: c3 ret

Figure 3.39: Disassembled code for Problem 3.36.

Keep in mind that your attack is very machine and compiler specific. You may need to alter your string
when running on a different machine or with a different version of GCC.

Homework Problem 3.39 [Category 2]:

Use the asm statement to implement a function with the prototype

void full_umul(unsigned x, unsigned y, unsigned dest[]);

This function should compute the full 64-bit product of its arguments and store the results in the destination
array, with dest[0] having the low-order 4 bytes and dest[1] having the high-order 4 bytes.

Homework Problem 3.40 [Category 2]:

The fscale instruction computes the function � ��� RTZ � � �
for floating-point values � and � , where RTZ

denotes the round-toward-zero function, rounding positive numbers downward and negative numbers up-
ward. The arguments to fscale come from the floating-point register stack, with � in %st(0) and � in
%st(1). It writes the computed value written %st(0)without popping the second argument. (The actual
implementation of this instruction works by adding RTZ � � � to the exponent of � ).

Using an asm statement, implement a function with the prototype

double scale(double x, int n, double *dest);

which computes � ��� � using the fscale instruction and stores the result at the location designated by
pointer dest. Extended asm does not provide very good support for IA32 floating point. In this case,
however, you can access the arguments from the program stack.
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Solutions to Practice Problems

Problem 3.1 Solution: [Pg. 128]

This exercise gives you practice with the different operand forms.

Operand Value Comment
%eax 0x100 Register
0x104 0xAB Absolute address
$0x108 0x108 Immediate
(%eax) 0xFF Address 0x100
4(%eax) 0xAB Address 0x104
9(%eax,%edx) 0x11 Address 0x10C
260(%ecx,%edx) 0x13 Address 0x108
0xFC(,%ecx,4) 0xFF Address 0x100
(%eax,%edx,4) 0x11 Address 0x10C

Problem 3.2 Solution: [Pg. 132]

Reverse engineering is a good way to understand systems. In this case, we want to reverse the effect of the
C compiler to determine what C code gave rise to this assembly code. The best way is to run a “simulation,”
starting with values x, y, and z at the locations designated by pointers xp, yp, and zp, respectively. We
would then get the following behavior:

1 movl 8(%ebp),%edi xp

2 movl 12(%ebp),%ebx yp

3 movl 16(%ebp),%esi zp

4 movl (%edi),%eax x

5 movl (%ebx),%edx y

6 movl (%esi),%ecx z

7 movl %eax,(%ebx) *yp = x

8 movl %edx,(%esi) *zp = y

9 movl %ecx,(%edi) *xp = z

From this we can generate the following C code:

code/asm/decode1-ans.c

1 void decode1(int *xp, int *yp, int *zp)
2 {
3 int tx = *xp;
4 int ty = *yp;
5 int tz = *zp;
6

7 *yp = tx;
8 *zp = ty;
9 *xp = tz;

10 }
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code/asm/decode1-ans.c

Problem 3.3 Solution: [Pg. 133]

This exercise demonstrates the versatility of the leal instruction and gives you more practice in deciphering
the different operand forms. Note that although the operand forms are classified as type “Memory” in Figure
3.3, no memory access occurs.

Expression Result
leal 6(%eax), %edx

	 � �
leal (%eax,%ecx), %edx � � �

leal (%eax,%ecx,4), %edx � � � �

leal 7(%eax,%eax,8), %edx � � � �
leal 0xA(,$ecx,4), %edx

� � � � �

leal 9(%eax,%ecx,2), %edx
� � � � � �

Problem 3.4 Solution: [Pg. 134]

This problem gives you a chance to test your understanding of operands and the arithmetic instructions.

Instruction Destination Value
addl %ecx,(%eax) 0x100 0x100
subl %edx,4(%eax) 0x104 0xA8
imull $16,(%eax,%edx,4) 0x10C 0x110
incl 8(%eax) 0x108 0x14
decl %ecx %ecx 0x0
subl %edx,%eax %eax 0xFD

Problem 3.5 Solution: [Pg. 135]

This exercise gives you a chance to generate a little bit of assembly code. The solution code was generated
by GCC. By loading parameter n in register %ecx, it can then use byte register %cl to specify the shift
amount for the sarl instruction:

1 movl 12(%ebp),%ecx Get n

2 movl 8(%ebp),%eax Get x

3 sall $2,%eax x <<= 2

4 sarl %cl,%eax x >>= n

Problem 3.6 Solution: [Pg. 136]

This instruction is used to set register %edx to 0, exploiting the property that � ˆ � � �
for any � . It

corresponds to the C statement i = 0.

This is an example of an assembly language idiom—a fragment of code that is often generated to fulfill a
special purpose. Recognizing such idioms is one step in becoming proficient at reading assembly code.
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Problem 3.7 Solution: [Pg. 140]

This example requires you to think about the different comparison and set instructions. A key point to note
is that by casting the value on one side of a comparison to unsigned, the comparison is performed as if
both sides are unsigned, due to implicit casting.

1 char ctest(int a, int b, int c)
2 {
3 char t1 = a < b;
4 char t2 = b < (unsigned) a;
5 char t3 = (short) c >= (short) a;
6 char t4 = (char) a != (char) c;
7 char t5 = c > b;
8 char t6 = a > 0;
9 return t1 + t2 + t3 + t4 + t5 + t6;

10 }

Problem 3.8 Solution: [Pg. 144]

This exercise requires you to examine disassembled code in detail and reason about the encodings for jump
targets. It also gives you practice in hexadecimal arithmetic.

A. The jbe instruction has as target 0x8048d1c
�
0xda. As the original disassembled code shows,

this is 0x8048cf8.

8048d1c: 76 da jbe 8048cf8
8048d1e: eb 24 jmp 8048d44

B. According to the annotation produced by the disassembler, the jump target is at absolute address
0x8048d44. According to the byte encoding, this must be at an address 0x54 bytes beyond that of
the mov instruction. Subtracting these gives address 0x8048cf0, as confirmed by the disassembled
code:

8048cee: eb 54 jmp 8048d44
8048cf0: c7 45 f8 10 00 mov $0x10,0xfffffff8(%ebp)

C. The target is at offset 000000cb relative to 0x8048907 (the address of the nop instruction). Sum-
ming these gives address 0x80489d2.

8048902: e9 cb 00 00 00 jmp 80489d2
8048907: 90 nop

D. An indirect jump is denoted by instruction code ff 25. The address from which the jump target is
to be read is encoded explicitly by the following 4 bytes. Since the machine is little endian, these are
given in reverse order as e0 a2 04 08.

80483f0: ff 25 e0 a2 04 jmp *0x804a2e0
80483f5: 08
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Problem 3.9 Solution: [Pg. 146]

Annotating assembly code and writing C code that mimics its control flow are good first steps in under-
standing assembly language programs. This problem gives you practice for an example with simple control
flow. It also gives you a chance to examine the implementation of logical operations.

A. code/asm/simple-if.c

1 void cond(int a, int *p)
2 {
3 if (p == 0)
4 goto done;
5 if (a <= 0)
6 goto done;
7 *p += a;
8 done:
9 }

code/asm/simple-if.c

B. The first conditional branch is part of the implementation of the || expression. If the test for p being
nonnull fails, the code will skip the test of a > 0.

Problem 3.10 Solution: [Pg. 148]

The code generated when compiling loops can be tricky to analyze, because the compiler can perform
many different optimizations on loop code, and because it can be difficult to match program variables with
registers. We start practicing this skill with a fairly simple loop.

A. The register usage can be determined by simply looking at how the arguments get fetched.

Register usage
Register Variable Initially
%esi x x
%ebx y y
%ecx n n

B. The body-statement portion consists of lines 4 through 6 in the C code and lines 6 through 8 in
the assembly code. The test-expr portion is on line 7 in the C code. In the assembly code, it is
implemented by the instructions on lines 9 through 14, as well as by the branch condition on line 15.

C. The annotated code is as follows:

Initially x, y, and n are at offsets 8, 12, and 16 from %ebp

1 movl 8(%ebp),%esi Put x in %esi

2 movl 12(%ebp),%ebx Put y in %ebx

3 movl 16(%ebp),%ecx Put n in %ecx
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4 .p2align 4,,7
5 .L6: loop:

6 imull %ecx,%ebx y *= n

7 addl %ecx,%esi x += n

8 decl %ecx n--

9 testl %ecx,%ecx Test n

10 setg %al n > 0

11 cmpl %ecx,%ebx Compare y:n

12 setl %dl y < n

13 andl %edx,%eax (n > 0) & (y < n)

14 testb $1,%al Test least significant bit

15 jne .L6 If != 0, goto loop

Note the somewhat strange implementation of the test expression. Apparently, the compiler recog-
nizes that the two predicates (n > 0) and (y < n) can only evaluate to 0 or 1, and hence the
branch condition need only test the least significant byte of their AND. The compiler could have been
more clever and used the testb instruction to perform the AND operation.

Problem 3.11 Solution: [Pg. 151]

This problem offers another chance to practice deciphering loop code. The C compiler has done some
interesting optimizations.

A. The register usage can be determined by looking at how the arguments get fetched, and how registers
are initialized.

Register usage
Register Variable Initially
%eax a a
%ebx b b
%ecx i 0
%edx result a

B. The test-expr occurs on line 5 of the C code and on line 10 and the jump condition of line 11 in the
assembly code. The body-statement occurs on lines 6 through 8 of the C code and on lines 7 through
9 of the assembly code. The compiler has detected that the initial test of the while loop will always
be true, since i is initialized to 0, which is clearly less than 256.

C. The annotated code is as follows

1 movl 8(%ebp),%eax Put a in %eax

2 movl 12(%ebp),%ebx Put b in %ebx

3 xorl %ecx,%ecx i = 0

4 movl %eax,%edx result = a

5 .p2align 4,,7
a in %eax, b in %ebx, i in %ecx, result in %edx
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6 .L5: loop:

7 addl %eax,%edx result += a

8 subl %ebx,%eax a -= b

9 addl %ebx,%ecx i += b

10 cmpl $255,%ecx Compare i:255

11 jle .L5 If <= goto loop

12 movl %edx,%eax Set result as return value

D. The equivalent goto code is as follows

1 int loop_while_goto(int a, int b)
2 {
3 int i = 0;
4 int result = a;
5 loop:
6 result += a;
7 a -= b;
8 i += b;
9 if (i <= 255)

10 goto loop;
11 return result;
12 }

Problem 3.12 Solution: [Pg. 155]

One way to analyze assembly code is to try to reverse the compilation process and produce C code that
would look “natural” to a C programmer. For example, we wouldn’t want any goto statements, since these
are seldom used in C. Most likely, we wouldn’t use a do-while statement either. This exercise forces
you to reverse the compilation into a particular framework. It requires thinking about the translation of for
loops. It also demonstrates an optimization technique known as code motion, where a computation is moved
out of a loop when it can be determined that its result will not change within the loop.

A. We can see that result must be in register %eax. It gets set to 0 initially and it is left in %eax at
the end of the loop as a return value. We can see that i is held in register %edx, since this register is
used as the basis for two conditional tests.

B. The instructions on lines 2 and 4 set %edx to n-1.

C. The tests on lines 5 and 12 require i to be nonnegative.

D. Variable i gets decremented by instruction 4.

E. Instructions 1, 6, and 7 cause x*y to be stored in register %ecx.

F. Here is the original code:
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1 int loop(int x, int y, int n)
2 {
3 int result = 0;
4 int i;
5 for (i = n-1; i >= 0; i = i-x) {
6 result += y * x;
7 }
8 return result;
9 }

Problem 3.13 Solution: [Pg. 159]

This problem gives you a chance to reason about the control flow of a switch statement. Answering the
questions requires you to combine information from several places in the assembly code:

1. Line 2 of the assembly code adds 2 to x to set the lower range of the cases to 0. That means that the
minimum case label is � � .

2. Lines 3 and 4 cause the program to jump to the default case when the adjusted case value is greater
than 6. This implies that the maximum case label is � � � 	 � � .

3. In the jump table, we see that the second entry (case label �
�
) has the same destination (.L10) as

the jump instruction on line 4, indicating the default case behavior. Thus, case label �
�

is missing in
the switch statement body.

4. In the jump table, we see that the fifth and sixth entries have the same destination. These correspond
to case labels � and

�
.

From this reasoning, we draw the following two conclusions:

A. The case labels in the switch statement body had values � � ,
�
,
�
, � ,

�
, and � .

B. The case with destination .L8 had labels � and
�
.

Problem 3.14 Solution: [Pg. 162]

This is another example of an assembly code idiom. At first it seems quite peculiar—a call instruction
with no matching ret. Then we realize that it is not really a procedure call after all.

A. %eax is set to the address of the popl instruction.

B. This is not a true subroutine call, since the control follows the same ordering as the instructions and
the return address is popped from the stack.

C. This is the only way in IA32 to get the value of the program counter into an integer register.
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Problem 3.15 Solution: [Pg. 164]

This problem makes concrete the discussion of register usage conventions. Registers %edi, %esi, and
%ebx are callee save. The procedure must save them on the stack before altering their values and restore
them before returning. The other three registers are caller save. They can be altered without affecting the
behavior of the caller.

Problem 3.16 Solution: [Pg. 166]

Being able to reason about how functions use the stack is a critical part of understanding compiler-generated
code. As this example illustrates, the compiler allocates a significant amount of space that never gets used.

A. We started with %esp having value 0x800040. Line 2 decrements this by 4, giving 0x80003C,
and this becomes the new value of %ebp.

B. We can see how the two leal instructions compute the arguments to pass to scanf. Since arguments
are pushed in reverse order, we can see that x is at offset � � relative to %ebp and y is at offset � � .
The addresses are therefore 0x800038 and 0x800034.

C. Starting with the original value of 0x800040, line 2 decremented the stack pointer by 4. Line 4
decremented it by 24, and line 5 decremented it by 4. The three pushes decremented it by 12, giving
an overall change of 44. Thus, after line 10 %esp equals 0x800014.

D. The stack frame has the following structure and contents:
0x800060

0x53

0x46

x

y

%ebp

0x800038

0x800034

0x300070

0x80003C

0x800038

0x800034

0x800030

0x80002C

0x800028

0x800024

0x800020

0x80001C

0x800018

0x800014 %esp

E. Byte addresses 0x800020 through 0x800033 are unused.

Problem 3.17 Solution: [Pg. 172]

This exercise tests your understanding of data sizes and array indexing. Observe that a pointer of any kind
is 4 bytes long. The GCC implementation of long double uses 12 bytes to store each value, even though
the actual format requires only 10 bytes.
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Array Element size Total size Start address Element
�

S 2 28 �
S

�
S
� � �

T 4 12 �
T

�
T
� � �

U 4 24 �
U

�
U
� � �

V 12 96 �
V

�
V
� � � �

W 4 16 �
W

�
W
� � �

Problem 3.18 Solution: [Pg. 173]

This problem is a variant of the one shown for integer array E. It is important to understand the difference
between a pointer and the object being pointed to. Since data type short requires two bytes, all of the
array indices are scaled by a factor of two. Rather than using movl, as before, we now use movw.

Expression Type Value Assembly
S+1 short * �

S
� � leal 2(%edx),%eax

S[3] short M
� �
S
� 	
�

movw 6(%edx),%ax
&S[i] short * �

S
� � � leal (%edx,%ecx,2),%eax

S[4*i+1] short M
� �
S
� � � � � � movw 2(%edx,%ecx,8),%ax

S+i-5 short * �
S
� � � � � �

leal -10(%edx,%ecx,2),%eax

Problem 3.19 Solution: [Pg. 176]

This problem requires you to work through the scaling operations to determine the address computations,
and to apply the formula for row-major indexing. The first step is to annotate the assembly to determine
how the address references are computed:

1 movl 8(%ebp),%ecx Get i

2 movl 12(%ebp),%eax Get j

3 leal 0(,%eax,4),%ebx 4*j

4 leal 0(,%ecx,8),%edx 8*i

5 subl %ecx,%edx 7*i

6 addl %ebx,%eax 5*j

7 sall $2,%eax 20*j

8 movl mat2(%eax,%ecx,4),%eax mat2[(20*j + 4*i)/4]

9 addl mat1(%ebx,%edx,4),%eax + mat1[(4*j + 28*i)/4]

From this we can see that the reference to matrix mat1 is at byte offset � � � � � � � , while the reference to
matrix mat2 is at byte offset � � � � � � � . From this we can determine that mat1 has 7 columns, while mat2
has 5, giving

� � �
and � � � .

Problem 3.20 Solution: [Pg. 177]

This exercise requires you to study assembly code to understand how it has been optimized. This is an
important skill for improving program performance. By adjusting your source code, you can have an effect
on the efficiency of the generated machine code.

The following is an optimized version of the C code:
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1 /* Set all diagonal elements to val */
2 void fix_set_diag_opt(fix_matrix A, int val)
3 {
4 int *Aptr = &A[0][0] + 255;
5 int cnt = N-1;
6 do {
7 *Aptr = val;
8 Aptr -= (N+1);
9 cnt--;

10 } while (cnt >= 0);
11 }

The relation to the assembly code can be seen via the following annotations:

1 movl 12(%ebp),%edx Get val

2 movl 8(%ebp),%eax Get A

3 movl $15,%ecx i = 0

4 addl $1020,%eax Aptr = &A[0][0] + 1020/4

5 .p2align 4,,7
6 .L50: loop:

7 movl %edx,(%eax) *Aptr = val

8 addl $-68,%eax Aptr -= 68/4

9 decl %ecx i--

10 jns .L50 if i >= 0 goto loop

Observe how the assembly code program starts at the end of the array and works backward. It decrements
the pointer by 68 ( � � �#� � ), since array elements A[i-1][i-1] and A[i][i] are spaced N+1 elements
apart.

Problem 3.21 Solution: [Pg. 183]

This problem gets you to think about structure layout and the code used to access structure fields. The
structure declaration is a variant of the example shown in the text. It shows that nested structures are
allocated by embedding the inner structures within the outer ones.

A. The layout of the structure is as follows:

Offset 0 4 8 12
Contents p s.x s.y next

B. It uses 16 bytes.

C. As always, we start by annotating the assembly code:

1 movl 8(%ebp),%eax Get sp

2 movl 8(%eax),%edx Get sp->s.y

3 movl %edx,4(%eax) Copy to sp->s.x

4 leal 4(%eax),%edx Get &(sp->s.x)

5 movl %edx,(%eax) Copy to sp->p

6 movl %eax,12(%eax) sp->next = p
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From this, we can generate C code as follows:

void sp_init(struct prob *sp)
{

sp->s.x = sp->s.y;
sp->p = &(sp->s.x);
sp->next = sp;

}

Problem 3.22 Solution: [Pg. 187]

This is a very tricky problem. It raises the need for puzzle-solving skills as part of reverse engineering to
new heights. It shows very clearly that unions are simply a way to associate multiple names (and types)
with a single storage location.

A. The layout of the union is shown in the table that follows. As the table illustrates, the union can have
either its “e1” interpretation (having fields e1.p and e1.y), or it can have its “e2” interpretation
(having fields e2.x and e2.next).

Offset 0 4
Contents e1.p e1.y

e2.x e2.next

B. It uses 8 bytes.

C. As always, we start by annotating the assembly code. In our annotations, we show multiple possible
interpretations for some of the instructions, and then indicate which interpretation later gets discarded.
For example, line 2 could be interpreted as either getting element e1.y or e2.next. In line 3, we
see that the value gets used in an indirect memory reference, for which only the second interpretation
of line 2 is possible.

1 movl 8(%ebp),%eax Get up

2 movl 4(%eax),%edx up->e1.y (no) or up->e2.next

3 movl (%edx),%ecx up->e2.next->e1.p or up->e2.next->e2.x (no)

4 movl (%eax),%eax up->e1.p (no) or up->e2.x

5 movl (%ecx),%ecx *(up->e2.next->e1.p)

6 subl %eax,%ecx *(up->e2.next->e1.p) - up->e2.x

7 movl %ecx,4(%edx) Store in up->e2.next->e1.y

From this, we can generate C code as follows:

void proc (union ele *up)
{

up->e2.next->e1.y = *(up->e2.next->e1.p) - up->e2.x;
}
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Problem 3.23 Solution: [Pg. 190]

Understanding structure layout and alignment is very important for understanding how much storage differ-
ent data structures require and for understanding the code generated by the compiler for accessing structures.
This problem lets you work out the details of some example structures.

A. struct P1 { int i; char c; int j; char d; };

i c j d Total Alignment
0 4 8 12 16 4

B. struct P2 { int i; char c; char d; int j; };

i c d j Total Alignment
0 4 5 8 12 4

C. struct P3 { short w[3]; char c[3] };

w c Total Alignment
0 6 10 2

D. struct P4 { short w[3]; char *c[3] };

w c Total Alignment
0 8 20 4

E. struct P3 { struct P1 a[2]; struct P2 *p };

a p Total Alignment
0 32 36 4

Problem 3.24 Solution: [Pg. 197]

This problem covers a wide range of topics, such as stack frames, string representations, ASCII code, and
byte ordering. It demonstrates the dangers of out-of-bounds memory references and the basic ideas behind
buffer overflow.

A. Stack at line 7.
Return address08 04 86 43

bf ff fc 94

00 00 00 01

00 00 00 02

Saved %ebp

buf[4-7]

buf[0-3]

Saved %esi

Saved %ebx

%ebp
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B. Stack after line 10 (showing only words that are modified).
Return address08 04 86 00

31 30 39 38

37 36 35 34

33 32 31 30

Saved %ebp

buf[4-7]

buf[0-3]

%ebp

C. The program is attempting to return to address 0x08048600. The low-order byte was overwritten
by the terminating null character.

D. The saved value of register %ebp was changed to 0x31303938, and this will be loaded into the
register before getline returns. The other saved registers are not affected, since they are saved on
the stack at lower addresses than buf.

E. The call to malloc should have had strlen(buf)+1 as its argument, and it should also check
that the returned value is non-null.

Problem 3.25 Solution: [Pg. 203]

This problem gives you a chance to try out the recursive procedure described in Section 3.14.2.

1 load c
�

%st(0)

2 load b
�
�

%st(0)

%st(1)

3 multp
� � � %st(0)

4 load a
�
� � �

%st(0)

%st(1)

5 addp
� � � � � %st(0)

6 neg
� � � � � � � � %st(0)

7 load c
�� � � � � � � �

%st(0)

%st(1)

8 load b
�
�� � � ��� � � �

%st(0)

%st(1)

%st(2)

9 load a
�
�
�� � � ��� � � �

%st(0)

%st(1)

%st(2)

%st(3)

10 multp
� � �
�� � � ��� � � �

%st(0)

%st(1)

%st(2)

11 divp
� � � � �

� � � ��� � � �
%st(0)

%st(1)

12 multp
� � � � � � � � � � � � � � %st(0)

13 storep x

Problem 3.26 Solution: [Pg. 206]

The following code is similar to that generated by the compiler for selecting between two values based on
the outcome of a test:



3.16. SUMMARY 241

1 test %eax,%eax

2 jne L11
�
�

%st(0)

%st(1)

3 fstp %st(0)
�

%st(0)

4 jmp L9
5 L11:

6 fstp %st(1)
�

%st(0)

7 L9:

The resulting top of stack value is x ? a : b.

Problem 3.27 Solution: [Pg. 209]

Floating-point code is tricky, with its different conventions about popping operands, the order of the argu-
ments, etc. This problem gives you a chance to work through some specific cases in complete detail.

1 fldl b
�

%st(0)

2 fldl a
�
�

%st(0)

%st(1)

3 fmul %st(1),%st
� � �
�

%st(0)

%st(1)

4 fxch
�
� � �

%st(0)

%st(1)

5 fdivrl c
� � �� �
�

%st(0)

%st(1)

6 fsubrp
� � � � � � � %st(0)

7 fstp x

This code computes the expression x = a*b - c/b.

Problem 3.28 Solution: [Pg. 210]
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This problem requires you to think about the different operand types and sizes in floating-point code.

code/asm/fpfunct2-ans.c

1 double funct2(int a, double x, float b, float i)
2 {
3 return a/(x+b) - (i+1);
4 }

code/asm/fpfunct2-ans.c

Problem 3.29 Solution: [Pg. 212]

Insert the following code between lines 4 and 5:

1 cmpb $1,%ah Test if comparison outcome is <

Problem 3.30 Solution: [Pg. 217]

1 int ok_smul(int x, int y, int *dest)
2 {
3 long long prod = (long long) x * y;
4 int trunc = (int) prod;
5

6 *dest = trunc;
7 return (trunc == prod);
8 }


