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When data include extremes, finite expectations may not exist and rational policymaking
fails. We apply methods from Extreme Value Theory to data on mortality rates from respira-
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This allows us to ask: Did US policymakers fail to predict a COVID-19-scale event because
finite expectations existed but were not incorporated into policymaking preparation or be-
cause they were “surprised”by such a catastrophic occurrence, as extreme outliers precluded
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US and World data: First, as a baseline, we find that relying on domestic data yields finite
expectations that are modest and far from a COVID-19-scale catastrophe. We then con-
sider a counterfactual where policymakers randomly incorporate global events, reflecting an
approach that accounts for an unknown event of unknown severity. A priori, this reflects
the frequency of global contagions in the recent past and the likelihood of catastrophic out-
comes from a single event. Ex post, the motivation is clear given the COVID-19 pandemic.
Depending on the structure of randomness which we detail, the estimated heavy-tailed dis-
tributions do produce finite expectations in certain conditions, predicting US mortality rates
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Catastrophic Risk, Contagion and Public Policy:
Could Data Have Revealed the Risk of COVID-19?
“We’ve got to be more willing to consider observations made in other countries dealing

with [the coronavirus]”1

1 Introduction

The striking contrast between the tame US mortality rates from global respiratory contagions

over the past 40 years relative to the rest of the world (Table 1) and its dramatic experience

with COVID-19, where mortality has surpassed all other countries at the time of this writing

and exceed its own 1918 flu pandemic (Figure 1), point to the classic case of a rare and

extreme event. The US public’s response to this event remained muted for some time after

it began. A recent paper by [Pike, et al. (2020)] analyzed such public under-reaction to

pandemics in a fascinating natural experiment in the context of the 2014 Eboli outbreak. The

public’s attitude towards pandemics remained surprisingly unchanged before and after the

event. Similarly, [Viscusi 2009] finds that an age old dramatic event like 9/11 is more highly

valued by the public than a deadly pandemic or a catastrophe due to climate change2 The

study by [Pike, et al. (2020)] contained a warning to policymakers: “The present COVID-19

pandemic drives home the importance of these behavioral results and the necessity of taking

stronger preventive measures than the public might consider necessary.”(ibid; italics added

for emphasis).

This is where our query begins, i.e., policymakers’ response to catastrophic events in

general and health epidemics in particular. Here the question arises: if the public’s reaction,

based on behavioral patterns rooted in fear or other departures from “rationality,”leads to

anomalies as described above, does some form of myopia also characterize the policymakers’

1James E.K. Hildreth, chief executive of Meharry Medical College. Quoted in Washington Post, August
4, 2021

2 [Viscusi 2009] found that the public was twice as concerned about terrorism risk than about other forms
of risk.

1

Electronic copy available at: https://ssrn.com/abstract=4090809



early under-reaction to a COVID-19 scale event, or their failure to anticipate an event of

such scale despite some anecdotal evidence of early warnings3? While we do not know

the direct answer to this question, if we assume that government decisions are "rational"

and driven by data, then understanding the nature and pattern of the data available to

policymakers becomes crucial. In this paper, we will study the distributional properties of

pre-COVID-19 mortality data from all respiratory infections both in the US and globally,

to assess whether policymakers could have predicted a coming COVID-19 scale event.4 Our

answer is surprisingly “yes”under some reasonable assumptions and “no”under others.5

In general, because extreme events belong to the tail of heavy tailed distributions, the

key question for policymaking is whether the past offers any help in predicting such extreme

events for rational policymaking. Statistically, this is equivalent to asking whether the

policymakers’early under-reaction to the COVID-19 pandemic was because an event of this

scale was so extreme as to defy the existence of a finite mean or expectation and thus remain

unpredictable, amounting to a surprise, or whether expectations from the distributional fit to

the data did exist (despite heavy tails) and were well behaved (had finite variance), in which

case data could have allowed policymakers to have been better prepared for a COVID-19

scale outlier.

We answer this question by comparing, contrasting, and lastly synthesizing US and global

mortality data on respiratory contagions pre-COVID-19. In the synthesis stage, we develop a

counterfactual framework that accounts for outcomes on the scale of other nations, helping to

3See for example Bill Gates speach at TED talk in 2015. https://www.ted.com/talks/bill_gates_the_next_out
break_we_re_not_ready?language=en
and President Obama speeach, in 2014:
https://www.cnn.com/videos/politics/2020/04/10/barack-obama-2014-pandemic-comments-sot-ctn-

vpx.cnn
4In an interesting paper, [Viscusi 2020] uses the value of statistical life (VSL) to show that the economic

cost morbidity from COVID-19 is more costly than from mortality, partly due to the overrepresentation of
the old in COVID-related mortality. Since our focus in the policymakers ability to predict a COVID-19 event
before it actually happened, such a considerations, while important, is not as closely related to the question
at hand.

5While this answer may point to other (non-data) related factors (e.g., political, behavioral), for the lack
of an early government response to COVID-19, studying these issues is certainly impotrant but beyond the
scope of our investigation.
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form expectations in the face of random global transmission of unknown contagions. When

we do this, the predicted US mortality becomes far higher than the US historical average

and, when expectation do exist, it approximates US mortality from COVID-19 at the time

of this writing, offering affi rmation of the above quote. Our paper provides a clear path for

how data can be properly utilized to both diagnose certain types of policy failure and inform

policymaking of how extreme events may be better anticipated.

To do this, we adopt methods from the statistics of Extreme Value Theory (EVT) to

examine what they imply for policymaking. Making the determination of whether expecta-

tions exist and are well defined is important in assessing the "rationality" of public policy

based on the ability to form proper expectations. While there have been many investigations

of heavy tailed distributions in the cases of both natural and social phenomena (section 2),

we are aware of a only handful of papers within two lines of research that explore heavy

tails explicitly in relation to public policy: one on climate change ([Weitzman, 2009]; [Weitz-

man, 2011]; [Pindyck 2011];[Costello et al. (2010)]), and the other on terrorism ([Mohtadi

& Weber 2021]). As for pandemics and heavy tailed distributions, to our knowledge only

two other recent papers have studied the heavy tail properties of global contagions; one has

a historical focus covering ancient times up to the present ([Cirillo & Taleb (2020)]) and

the other focuses on superspreaders of COVD-19 ([Wong & Collins (2020)]). Neither paper

explicitly explores the policy implications of fat tail properties of contagions. We aim to fill

this gap.

Returning to the data and the context of respiratory contagions, the question of whether

policymakers can form proper expectations to predict the emergence of an extreme event, or

whether such events are too extreme to allow for finite expectations to be found, depends

on the structure of the probability density functions which in turn of course depends on

the structure of the data. The two datasets that we use for our comparison, contrast,

and synthesis, as previously stated, are the US domestic data from the Centers for Disease

Control (CDC) (1980-2017) and the global data from Global Burden of Diseases, Injuries,
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and Risk Factors Study (GBD) by the Institute for Health Metrics (IHME) at the University

of Washington covering 195 countries(1990-2017)6. This excludes COVID-19 both because

it is still in progress at the time of this writing, and also intentionally, as it permits "out of

sample predictions," allowing us to see if our prediction (should expectations exist) produces

mortality rates in the neighborhood of what we actually observe from the COVID-19 event.

A glimpse of our results indicates predictions of mortality rates that are very close to the

present mortality from COVID-19 under some conditions.

We first examine the distributional properties of each dataset separately and explore the

possible existence of fat tails for each, as detailed in section 3.1. One may ask, if the goal is

to estimate US expected mortality rates, assuming they exist (yet to be established), why

consider global mortality rates at all? How would using global data inform US policy? One

answer is that using only the US’own past history may ignore potential US vulnerability

from a highly fatal respiratory contagion that occurred elsewhere. For example, all four

instances of unexpected and severe respiratory contagions over the past two decades, SARS,

N1H1, MERS and COVID-19, began elsewhere before being transmitted to the US. But

while the first three led to US mortality rates much lower than some other countries, the

fourth has not. In this case, by using only US data, policymakers would have been lulled

into a false sense of security due to their inattention to tail behavior represented by the

extremes in the distribution of global mortality rates, leaving them unprepared to deal with

COVID-19. Naturally, the converse is also unsatisfactory: Using only global mortality rates

as the basis for forming expectations in the US, ignores US specificity and context.7

6Below are the links to the public data sources used in this paper. For CDC data variables were extracted
from the following source: https://www.cdc.gov/nchs/hus/contents2018.htm#Table_005

For GBD data, the general source is:
http://ghdx.healthdata.org/gbd-2017 and the specific link is:
https://gbd2017.healthdata.org/gbd-search?params=gbd-api-2017-permalink/86b42a8f452fedd2d8e9d859cee17000

GBD data covers 205 countries. Our covering of 195 is necessitated by the lack of population and some
other data for some small countries and Island nations that make up the remaining 10 countries.

7While the US and the global mortality data will both include instances of severe illnesses regardless of
their origin, the additional variation introduced by the global data will shed light on the potential instances
of extreme events which, as we will see, would be missed out otherwise. Section 3.2 provides additional
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One logical solution is to synthesize the two and explore the tail properties of the resulting

density function. But how should this be done? Since US policymakers cannot know when

global mortality rates may be relevant to the US for any given year, we develop a framework

in which we randomly allow global mortality rates to enter into the US data. This is akin

to asking the following counterfactual: "What if for a given year, or a number of years, the

US was as unprepared for a pandemic as other countries were for any new or known yearly

infection?" Given US COVID-19 mortality rates relative to the rest of the world this question

is not just a hypothetical exercise, but one that may inform future policy preparation and

planning. How this synthesis is to be done, the technical issues that it raises, and what

it means for tail behavior, expectation formation and policymaking, are at the core of this

paper and presented in subsequent pages.

In what follows, section 2 presents the theory and method, including discussion of the

nonparametric Hill estimator of the tail and the EVT distributions that are used for the

parametric estimates of the tail, section 3 presents the actual tail estimates, predicts mor-

talities, and discusses the policy challenge when a finite mean does not exist, proposing a

path forward, section 4 provides concluding remarks.

2 Theory and Method

To examine tail behavior and estimate the tail of a distribution, one approach is to calcu-

late the non-parametric Hill estimator ([Hill (1975)]; [Embrechts, Klüppelberg & Mikosch

(2003)]) which is agnostic to the choice of distributions. Another is to parametrically es-

timate the tail by applying any of three classes of distributions; simple Pareto (and the

related Power Law distributions), Generalized Pareto distribution (GPD), and the family

of Generalized Extreme Value Distributions (EVD). We will follow both the parametric and

the non-parametric approaches, using each approach as a robustness check on the other. For

discussion of these important considerations.
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greater robustness, we use all three of the parametric distributions to estimate the tail and,

by implication, the expected mortality rates. For parametric distributions, however, since

mathematical linkages between the three classes of distributions exist, with implications for

our results, all three classes will be described below prior to the estimation.

Examples of heavy-tailed distributions abound. They have included natural disasters

(e.g., earthquakes) ([Newman 2005 ]), wealth ([Jones 2015]), finance ([Bali 2007]) and ter-

rorism ([Mohtadi & Murshid (a) 2009], [Mohtadi & Murshid (b) 2009], [Mohtadi & Agiwal

2012]) as well as events characterized by a subset of heavy-tailed distributions, Power Law

and Pareto distributions, that are scale-independent and exhibit fractal structures. These

range from biology ([West, Brown & Enquist 1997], [Ravasz et al. 2002]) to firm structure

([Stanley et al. 1996]), city size ([Mori, Smith & Wen-Tai 2020], [Sarabia & Prieto 2009]),

and wars and terrorism ([Spagat, Johnson and Weezel 2018]).

2.1 Heavy-tailed distribution classes and their links

In the Pareto distribution which has the form of a power law, a continuous random variable

X is ‘fat-tailed’if its survival function P (X ≥ x) decays according to a power law x−α as

x increases. The size of α also determines how fat the tail is. This in turn determines the

existence of moments. In particular, the first moment exists, E[X] < ∞, if and only if α

> 1, and the second moment exists, E[X2] <∞, if and only if α > 2. When α ≤ 1, the tail

is so heavy and the decay rate so slow that no finite mean exists and when α ≤ 2, it is slow

enough that the mean is infinitely imprecisely estimated. The classical Pareto distribution

has a cumulative distribution function of the form,

FX(x) = 1− (
x

σ
)−a x ≥ σ > 0 (1)

where σ is a known scale parameter, representing the lowest value of x. While the fractal

property and the scale independence of the Power Law and Pareto distribution are well
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known, thus making them attractive for estimation of potentially heavy tailed phenomena,

the two other classes of heavy-tailed distributions, GPD and GEV, capture other features of

data and each are appropriate in certain data environments. GPD is related to the classical

Pareto distribution in that the latter is known to be the asymptotic form of GPD ([Gnedenko

(1943)]). GPD includes a shape parameter, ξ, which is the inverse of Pareto’s decay rate of

α and is critical for deciding the existence of fat tails (see below). It also adds a location

parameter, µ, that captures threshold values above which tail behavior is expected, as well as

a scale parameter, σ, that indicates roughly the expected range of the data. The cumulative

distribution function for GPD is of the form,

FX,µ,σ,ξ(x) =

{
1− [1 + ξ(x−µ)

σ
]−

1
ξ for ξ 6= 0

1− e(−x−µ
σ
) for ξ = 0

}
(2)

A second representation of GPD is in the form of the Peak over Threshold model (POT).

In particular, for a random variable X, the distribution of the standardized excesses over

threshold approaches GPD in the limit. To see this, suppose xF is defined as the right end

point of the distribution, whether finite or infinite. Then, as the threshold approaches this

value, the probability of excess approaches GPD:

P

(
X − µ
σ

< x|X > x

)
→ FX,ξ(x) as µ→ xF (3)

where,

FX,ξ(x) =

{
1− (1 + ξ]−

1
ξ for ξ 6= 0

1− e−x for ξ = 0

}
(4)

The most general class of fat tailed distributions is GEV. This distribution is on one hand

related to the GPD distribution (see below) and, on the other, to an important theorem, the

Fisher-Tippet Theory ([Fisher & Tippett (1928)]) of Extrema, otherwise known as Extreme

Value Theory (EVT). To understand this, let X1, X2,...Xn be independently and identically
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distributed (iid) random variables whose distribution is F . Let Mn = max(X1, X2,...Xn).

Then, if there exists a sequence of constants {an > 0} and {bn} such that,

P

(
Mn − bn
an

< x

)
→ G(x) as n →∞ (5)

for a non-degenerate limiting distribution, G, it follows that the distribution F is in the

(maximum) domain of attraction of G where G is a GEV distribution. By the Fisher-Tippet

Theory, the GEV distribution is given by ([Coles et al. (2001)])8

GX,ξ,µ,σ(x) =

{
e−(1+ξ

x−µ
σ
)
− 1
ξ for ξ 6= 0

−e−x−µ
σ for ξ = 0

}
(6)

This class of heavy tailed distributions is particularly suited to the block maxima struc-

ture of our global data as we will see shortly. It is also the most general of the three,

and embodies several different distributions; the extremely heavy-tail Frechet distribution

(ξ > 0), the light-tail Gumble distribution (ξ = 0) and the bounded-tail Weibull distribu-

tion (ξ < 0). Importantly the value of shape parameter, ξ, is the same in both GPD and

GEV distributions when limits exist ([Németh & Zempléni (2020)]). It turns out that this

distribution also represents some forms of Gamma and Cauchy distributions.9

In what follows, we will estimate these distributions for each of our datasets as well

as for their synthesis. The latter is critical to our analysis. It was briefly described in

the Introduction but will be described much more fully later. As previously stated, for

robustness, we will also employ a nonparametric method for the various order statistics of

the data to estimate the tail of the distributions. This latter approach will be described as

we proceed with the estimation procedure.

8From above, P (Mn < x) → G( z−bnan
) ≡ G∗(z) where G∗ is another distrbution also in the GEV family.

In practice, since µ and σ are estimated, the difference in parameters of G and G∗ make little difference. See
Coles et al. (2001, p. 48-49 for greater detail).

9Note that for classic Pareto distribution the mean exists only when α > 1 while for GPD and GEV
distributions, mean exists only when ξ < 1. This because a faster (slower) decay for Pareto implies a lighter
(heavier) tail for GPD and GEV distributions. In fact α = 1/ξ (e.g., see [Cirillo & Taleb (2020)]).
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3 Estimation

3.1 US and the World Data Separated

In this subsection, we first consider a world where the US estimates of mortality from respi-

ratory contagions are based solely on its own history and go about estimating the tail of the

corresponding distribution. For comparison, we will also estimate the tail of the distributions

associated with the global data. In subsection 3.2 we will then integrate the two datasets,

following a somewhat elaborate randomization approach that is aimed at mimicking rational

policymakers’view of how to prepare for an unknown event of unknown severity. These

types of considerations are especially salient given the potential for global infections which

arrive unexpectedly and bring with them highly variable outcomes. In each subsection, we

will conduct both a parametric and a nonparametric estimate of the tail.

3.1.1 Parametric Estimates of the Tail

Table 1 presents the US data for two different periods, 1980-2017 and 1990-2017, the latter

to conform to the world data which is only available from 1990 to 2017. The world data is

presented for three different measures; country average per year, world uniform average per

year, and world’s most affected country per year, all per 100,000 inhabitants.10 A simple

glance at the data confirms that US mortality rate is far more modest that any of the three

global measures. Yet, when fitted with any of the three parametric distributions discussed,

not only does the US data not exhibit heavy tails, but even the considerably higher values

from the world data (in any of its measures) fail to produce heavy tails (Table 2). This can

be seen either from the high decay rate of the Pareto distribution exceeding 1, or the shape

10Specifically, let, Nit and Pit represent the number of deaths and total population, respectively, per

country i in year t . For country level average mortality we calculate, 100, 000 ×
195∑
i=1

Nit/P it . For the

uniform average mortality, we calculate 100, 000 × (
195∑
i=1

Nit)/Pwt where Pwt is the world (sum of 195 countries)

population for year t. For the most affected country we calculate, 100, 000 × (N/P )µt where (N/P )µt =
max[(N/P )1t,(N/P )2t...(N/P )195,t] captures the highest fatality ratio for year t belonging to country µ.

9
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parameter estimates of the GEV and GPD distributions far below 1, with the confidence

intervals crossing zero into negative range. For GEV, this indicates a light tail associated

with the Gumble distribution when ξ = 0, or a bounded tail associated with the Weibull

distribution when ξ < 0. Note that the distributions for the USmortality data showmarkedly

smaller location parameters than those for the global mortality rates. This is especially so in

the case of the "most affected country per year" from the global data where the mean value

of the location parameter is 171.7, as compared to mean US mortality rates of 18.7 or 24.8,

depending on which sample period is considered. Later, we learn of large differences in the

implied US mortality rates when the global data is randomly combined with the CDC data

as will be described in detail.

This absence of heavy tails for either the US or global data, together with the vastly

different estimates of the location parameters between the US and globally most affected

country suggests that when the data are separated, distinct clusters in the distribution of

the mortality data exist so that, statistically speaking, the behavior of the US data does not

extrapolate to the global data and hence no heavy tails emerge. In fact, at a first glance

one might argue that mortality data from many of the past global contagions such as the

SARS family are already present in the US data and hence there is no need to consider

global mortality data. But this approach may lull policymakers into a false sense of security,

given the tame US mortality data form the past contagions. The COVID-19 event has

demonstrated the need to model contagions based on unexpectedly large mortality. As we

will show, accounting for such outcomes is only possible when we integrate the US and the

global data. How this is done and what it implies for policy myopia or rational policymaking

is the core of our paper. This will be studied in Section 3.2.

3.1.2 Nonparametric Estimate of the Tail: The Hill Estimator

For robustness, we now employ a nonparametric approach of approximating the potential

tail of the data using the Hill estimator ([Hill (1975)]; [Embrechts, Klüppelberg & Mikosch
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(2003)]). Calculating the Hill estimator requires order statistics. Tailored to the structure of

our data, we define two sets of order statistics. The first set is defined for a single observation

per year. For the US data this is obvious. For the world data single observation per year

consists of any of the three different measures discussed above and in footnote 4. By contrast,

the second set has a panel format which we will discussed shortly.

Single yearly observations: For a set of randomly distributed variable, X1..., XT over

the sample period T corresponding to mortality per year, let X(k)
T ≤ ... ≤ X

(1)
T be order

statistic of order k. Then the Hill estimator of the tail for k order statistic is given by,

ξ̂k =
1

k

k∑
i=1

ln(X
(i)
T )− ln(X

(k)
T ), 1 < k ≤ T (7)

Figures 2-6 show the Hill estimators of the tail as a function of variations in order statistics

k: Figure 2 and 3 represent US mortality rates starting either from 1980 or from 1990, the

latter for compatibility with the global data as previously mentioned; Figures 4-6 present

the Hill estimators for the world data consisting of world mortality rate averaged over all

countries (Figure 4), uniform world average mortality, i.e., total world mortality relative to

total world population (Figure 6), and world maximally affected country (Figure 6). None

of the figures exhibit a heavy tail pattern as seen by the fact that the Hill estimators of the

tail fall far below 1. This corroborates the findings of Table 1.

Panel approach — k observations per year: We now calculate a Hill estimator of

the tail associated with the second type of order statistics which exploits the panel nature

of the global mortality data. In this form, instead of a single observation for each year

t corresponding to either global average or global most affected country, as we have done

above, we map observations from the kth most affected country across the world (highest

mortality rate), for each year t, and calculate a Hill estimator over the sample period, T .

To formalize let, X1,1, .Xn,t.., XN,T be a set of randomly distributed variables representing

11
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mortality across N countries over T periods. Then for each given period t we can write:

X
(k)
N,t ≤ ... ≤ X

(1)
N,t |t = 1...T (8)

where X(k)
N,t is the k

th order across the N countries in year t. Note the contrast with the

previous definition: The generalization, from a single value associated with either the most

affected or the average of all affected countries each year, to now kth order of the same,

implies that each year t now contributes k observations to the calculation of Hill estimator

instead of just 1. This introduces a second summation to the traditional Hill estimator:

ξ̂k =
1

kT

T∑
t=1

k∑
i=1

ln(X
(i)
N,t)− ln(X

(k)
NT ), 1 < k ≤ N (9)

where X(k)
NT denotes the k

th order among a panel of NT observations11. Figure 7 which

presents the Hill estimator for the panel data finds that for values of k v 125, the tail

becomes so heavy (ξ v 1) that the underlying mean fails to exist. Intuitively, when we

include highly affected countries (low k values) with countries with very low mortality rates

(k v 125), the variations in mortality rates are so spread out that any resulting distribution

which embodies all such cases is "flattened out," leading to a decay rate so slow that a

finite mean fails to exist. Most interestingly, this result holds up for the (parametric) Pareto

distribution fit (Figure 8) with precisely the same support as above. Here, at k v 125 the

value of the Pareto’s α parameter cross 1 downwardly (α w 1), implying really fat tails and

infinite means. To see if it is the time variations or the variations across countries that are

responsible for this finding, a yearly k order statistics is also calculated for each year of the

sample. Results, reported in the appendix, confirm that cross country variations are the

source of flattening and of the resulting fat tails since in all years of the sample one still finds

the value of Pareto’s α to cross-over from 1 at k ' 125.
11To elaborate note that X(k)

N,t corresponds to the k
th lowest mortality rate in a given year for a given k

order statistic. Since there are T observations added for each iteration of the order, X(k)
NT is the minimum of

all those values for some year to ∈ T
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3.2 Combining US and World Data: Creating Counterfactuals

We stated in the Introduction that the additional variations from the global data will shed

light on the potential instances of extreme events. But there is also a deeper reason for com-

bining the two datasets. The current COVID-19 pandemic and previous infectious diseases

such as SARS, MERS and H1N1 have demonstrated the importance of planning for such

outbreaks. But by definition severe outbreaks are unexpected. If US policymakers focus on

annual US data, their expectations for mortalities, costs, and infrastructure preparedness

will be based on diseases for which we are already well prepared, for example the seasonal

flu. While outcomes related to the flu do vary year to year, our experience with this level of

variation has tuned our infrastructure to respond well to such changes. If policymakers were

to plan for an unexpected event, one strategy might be to act as if we did not have this

preparation in place. This is, of course, a counterfactual not widely available in US data. It

is this fact that motivates the need to look to global data in some form. However, while a

focus on global data which includes high mortality rates for many poor nations with poor

infrastructure and preparedness, could be illustrative of a lack of preparedness in the US

for a future extreme event, pure focus on global data may cause a cluster at the extremes

which, without considering the mild US mortality cases, would actually underestimate the

large variations that are necessary, if not suffi cient, for fat tails and are at the root of such

statistical behavior.

Thus, we must look for a way to combine the data. We thus opt for creating a coun-

terfactual vector of observations that effectively asks; "what if randomly, for some number

of years, the US faced a contagion which its infrastructure and policy was as unprepared

for as other high-impacted nations are today for existing outbreaks?”We answer this ques-

tion by randomly combining the US mortality data with the global mortality data and then

estimating the tail of the data. We consider this to be a reasonable way to model a pan-

demic because no matter how well suited our strategies and infrastructure may be for known

diseases, pandemics have shown that these same tools may not be well suited for unknown
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events. As such the best way to estimate the outcomes of unknown events for which we are

unprepared is to include some data from countries which are unprepared for known events.

We approach this in two ways, parametrically, by fitting one of our candidate distributions

to the data; and non-parametrically, by calculating the Hill estimator of ξ̂k for the order

distribution of the combined data. Both approaches involve randomization but with minor

differences. We begin with the parametric approach which is simpler in both description and

execution. We then move to describe the nonparametric approach.

3.2.1 Parametric tail estimates: randomized data mixing

Let R = the number of randomly selected years for which the US mortality rate is replaced

with the mortality rate of the most affected country for that year. We begin with randomly

selecting a single year, i.e., R = 1. This is effectively swapping a value from columns 5-7

in table 1 into column 4, supplanting that observation. We then fit our three candidate

distributions for this "single-year replaced" dataset. We next simulate the process 1000

times corresponding to other randomly chosen single years and record the median value for

the parameters of the estimated distribution from the 1000 runs. In the second step, we

choose R = 2 corresponding to two random years (not necessarily consecutive) to perform

the same exercise. We continue this approach by increasing R. While the choice of 1000

runs may seem overdone for a low number of replacement years, it addresses the challenge

of the large number permutations that arises (in tens of millions) when the number of years

replaced increases. Figures 9-11 depict variations in the shape parameter as a function of the

number of years of replacement. Note that Pareto decay passes downwardly crossing α = 1,

at about R = 7, so that α - 1 when about 7+ years of global data randomly replace US

data (Fig. 9). The shape parameters for GPD and GEV indicate a mid-range of replacement

years in which ξ % 1.This occurs, for the case of the GPD distribution, from about of 4 to

about 12 years of data replacement, and for the case of the GEV distribution, from about 2

to about 15 years of data replacement (Figs. 10 and 11). While this mid range occurrence
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of infinite means requires some explanation (below), the common feature of all the three

distributions is that for some level of data integration that indicates the global severity of a

contagion, expectations fail. This means that a surprise will occur for which policymakers

will be left unprepared. Later, we will calculate the predicted US death tolls from various

random mixtures for the various years of replacement in the range where means still exit.

An intuition for the fact that GPD and GEV distributions have their very heavy tails

occurring in the mid-range of the number of replacement years, R, may be that the mid-

range of R produces the highest spread in the data by mixing suffi cient observations from a

historically low mortality country (the US) with the much higher mortality rate associated

with the globally most affected country. The GPD and GEV distributions can better capture

this feature. This higher sensitivity of these distributions to the variations in the data may

also be at play for their wide confidence band of ξ̂ estimates in the mid range of R (figs. 9

and 10): In this range, the immense number of permutations of the mixed dataset is in its

highest range, leading to a large variance in our limited random sample of 1000.

We may also ask if there is a relation between the fat tails of the global panel data from

the nonparametric Hill estimator for k = 125+ (Fig. 7) and the fat tails of the parametric

estimates of the integrated US-global data. The answer lies in the source of the fat tails.

Specifically, the high spread that produces the fat tails in the integrated panel data is due to

combining a low-mortality country (the US) with a very high-mortality country (the most

affected country). Similarly , the high spread that produces the fat tails in the parametric

estimates is caused by mixing the low mortality group (k ≥ 125) with the high mortality

group (k < 125).

3.2.2 Nonparametric Hill estimator: Generalizing randomization scheme

In this approach, for k = 1 = R = 1 in the combined data, random replacement amounts to

replacing the US mortality rate for any single randomly selected year, with the mortality rate

of the most affected country for that year, as described above. However, Instead of estimating
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a parametric distribution, the non-parametric approach involves simply calculating the Hill

estimators to examine any potential tails in the data. As in the above scheme, the Hill

estimator is calculated for 1000 bootstraps. The values of the Hill estimator and its standard

errors are then averaged across the bootstraps. Once R and k exceed one, variations in

two distinct dimensions have significant effects on the results as we will describe shortly:

However, when we consider the fact that replacement years need not be consecutive and

can be spread in numerous different patterns over 28 years, the number of permutations

in this approach increases dramatically. While this fact limits the consideration of all the

possible configurations, we can still carry out 1000 random draws from the much larger set

of possibilities. Then the values of the Hill estimator and the standard errors are averaged

across those thousand estimations.

For economy of space, results are reported in Figures 12-15 for the entire range of order

statistics k = 1 − 28, but select values of R = 2, 3, 13 and 14 (though all are available

from the authors.) Note that in all cases, the Hill estimator of the tail rises precisely at

the point where US’own most affected year first starts combining with the "globally most

affected country" for each of the R random years. For example, if R = 2 and k = 3, the Hill

estimator is calculated using 2 observations from the "globally most affected county" and a

single observation from the US’own highest mortality year. As Figure 12 shows, k = 3 is

the point at which the Hill estimator of tail spikes, exceeding 1. Similarly, when R = 3, and

k = 4 the Hill estimator is calculated using 3 observations from the "globally most affected

county" and a single observation from the US’own highest mortality year. Once again, one

observes a spike in the Hill estimator at k = 4 (Fig. 13).

The above result is intertwined with the key message of the paper and therefore it needs

to be well understood: The main cause of this phenomenon is that once data from the US

most affected year, or years (if R > 1), is combined with the global most affected country,

the combination of a historically low mortality case (the US) with high mortality cases from

the global observations produces a wide spread in the observations, causing a heavy tail and
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unbounded mean behavior. Apart from the spikes, one also observes upward shifts in the

graphs as the number of replacement years, R, increases. For suffi ciently large R, the shift is

large enough that the Hill estimators of the tail remain above ξ = 1 for all k, even after the

values subside past the spike point. This indicates a very heavy tail and the absence of a finite

mean. This is best seen by a comparison of say Figure 12 for k = 2, against Figures 14 and

15 for k = 13 and 14 respectively. These results are consistent with the parametric results,

at least in terms of the Pareto distribution. In short, while the US remains a low risk country

in general, the possibility of a US contagion on par with observed global occurrences raises

the risks significantly. These results are in fact consistent with the expected US mortality

rates as will be discussed below.

3.3 Predicting expected US death tolls from a global contagion

Predicting US mortality from a global contagion depends on the policymakers’ choice of

the number years that US data could be randomly swapped with global data (Table 3). It

also depends on what heavy tail distribution one chooses to fit to that data. Regardless of

these variations, the range of values is wide but in some instances quite close to the actual

US mortality rate from COVID-19. For example, under the Pareto distribution, randomly

allowing 6 years of US mortality data to mimic global data raises total annual expected US

death toll, caused by a respiratory contagion, from about 76,000 annually based on purely

US data for 1990-2017 period (Table 1), to near 790,000 annually. Under GPD and EVT

distributions, randomly allowing only 2 years of data to mimic global data raises the annual

death tolls to about 110,000 and 431,000 respectively. These latter values fare much worse if

US mortality is allowed to be as likely as the most affected country for all of 28 years. In that

case, the death toll rises to between 588,000 and 631,000 annually. Over a two-year period,

these numbers range from about 220,000 to about 1,262,000. The US COVID mortality

of over 900,000 over the two years 2020-2021 is closer to the high end of this range. This

suggests that a strategy of allowing the US mortality to be as likely as the most affected

17

Electronic copy available at: https://ssrn.com/abstract=4090809



country for nearly every year would have produced results close to the actual experience.12

Even if, ex anti, the most affected country mortality data was not considered very likely

in the US, the above results suggest that scant attention to the global mortality rates, as

indicated by a least only a few years of replacement of domestic data with global data,

would have led to predicting mortality rates that far exceed the 76,000 value obtained from

CDC data alone. Both the finite means (shown) and the infinite means (implied) suggest

that heavy tails are driven by what appears—from the perspective of the domestic data—to

be extreme outliers. This is sometimes expected as in the case of finite means, other times

unexpected as in the case of infinite mean (precluding the formation of expectations). The

latter is possible because of the slower decay rate of the Pareto distribution parameter when

extrapolating from the domestic cluster to the more distant global cluster. Below, we will

discuss what this means for policy formation.

3.4 Rational Policy Challenge and "infinite mean" phenomenon

The idea of an infinite mean is unrealistic and only a mathematical abstract. An infinite

mean results because statistical inference from the extreme tail of the actual data extrap-

olates to an unbounded upper value. To remedy this problem [Cirillo & Taleb (2020)]

develop an equivalent "dual" distribution that incorporates a finite upper bound. A similar

point is raised regarding the second moment: Here, [Costello et al. (2010)] argue against a

point which was initially raised in [Weitzman, 2009]; [Weitzman, 2011] regarding the infinite

variance and thus uncertainty of the long-run global distribution of temperature, and the

consequent failure of a rational, expectation-based environmental policy, by imposing and

upper bound on the extent of that uncertainty.

Yet, when viewed ex anti, the idea that a finite mean fails to exist, and therefore that

expectations cannot be formed, is the very definition of a surprise, i.e., an unexpected or

12Note that the cases where no finite mean exists in Table 3 correspond precisely to the regions of space
in Figures 9 - 11 where the shape parameters indicate nonexistence of finite means.
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unpredictable event that agents were not prepared for. Two recent examples come to mind:

9/11 and COVID-19. The question is: does this absolve policymakers because they could not

have prepared for a surprise? We argue that the answer is no. This is because preparing for

large potentially catastrophic events, ex anti, is the very task of numerous risk management

agencies of any government (e.g., DHS and CDC in the US). No one prepares for an infinite

event but one can prepare for a large catastrophic event. One way to do this is to impose a

large upper bound on the largest conceivable value in the data as was done by [Costello et al.

(2010)]. Our approach is different but equivalent in its effect. Here, rather than imposing an

upper bound on the number of fatalities, we impose equivalently an upper on the extent of

the mixing of the two datasets, US and global, up to the point to still achieve a finite mean

(Table 3). Our predicted fatality rates are much larger than the historical average from the

US-only data as was discussed above. In fact, our fatality rates when data mixing is allowed

are surprisingly close the total US death toll from COVID-19 at the time of this writing

when the event has nearly run its course, though the emergence of the Delta variant may

change this picture. The key message in the case of COVID-19 is that policymakers could

have been much better prepared based solely on a statistical analysis that would have taken

global contagions into account. We leave the implication for other extreme events including

natural disasters to future research.

4 Concluding Remarks and Further Observations

Using methods from Extreme Value Theory to estimate heavy tails of the distribution of

mortalities from upper and lower respiratory contagions and allowing for global mortality

rates to randomly influence US mortality13, we are able to predict US mortality rates that

are very close to the US mortality rate from COVID-19 and are far higher than historical

US average of about 76,000 for the 1990-2017 period (Table 1). Only under extreme cir-

13This can signify for example a way to produce a US surprise by mimicking other countries’ lack of
preparedness to the poorer infrastructure.
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cumstances does a finite mean fail to exist, indicative of a very fat tail and amounting to a

surprise and failure of rational expectations. Yet the fact that estimates of statistical means

do exist for a large number of circumstances suggests that risk considerations and rational

policymaking could predict most large events and that policymakers can only rarely claim

to be truly surprised. When attention is only paid to mortality rates for illnesses for which

we have well-developed strategies in place, the ability to plan for the unknown is vastly

diminished.

Yet, underestimating risk by policymakers (as distinct from the scientific community)

may have characterized the US health care policy for some time. For example, it is generally

well known that the US has faced major challenges in public health over the years and has

simultaneously experienced a general decline in related expenditures [(Meit, et al. 2013)]

with the outcome that it ranks well behind major industrial economies in a large number

of health indices [United Health Foundation, 2019]. A 2014 commonwealth Fund Report by

[Davis et al. (2014)] ranked the US last among 34 industrialized countries in terms of the

quality of care, access to care and equity for the fifth time over a 10 year period. Moreover, it

has been suggested that the poor health outcomes are not limited to low income or minority

groups but are found across all incomes ages, races and education levels.14 While the current

COVD-19 pandemic has revealed possible inadequacies in public health policy in the US,

the origin for this trend may date back at least to the 1990’s, if not earlier [World Health

Organization Report, 2000].

14See American Public Health Association. https://www.apha.org/topics-and-issues/health-rankings
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Table 1. Mortality from upper and lower respiratory contagions*

Year US Year US
Most affected
country1

Uniform global
average1

Country­wise
global average1 US (1980­1989) US (1990­2017)

1980 31.4 1990 36.8 315.34 65.39 72.31 102,081.4 119,636.8
1981 30.0 1991 34.7 306.00 63.85 70.41 97,530.0 112,809.7
1982 26.5 1992 32.8 296.51 62.32 69.58 86,151.5 106,632.8
1983 29.8 1993 35 285.67 60.70 68.65 96,879.8 113,785.0
1984 30.6 1994 33.6 273.21 58.97 67.33 99,480.6 109,233.6
1985 34.5 1995 33.4 262.02 57.39 65.56 112,159.5 108,583.4
1986 34.8 1996 32.9 249.20 55.65 64.05 113,134.8 106,957.9
1987 33.8 1997 33.3 243.17 54.23 62.53 109,883.8 108,258.3
1988 37.3 1998 34.6 232.66 52.66 60.83 121,262.3 112,484.6
1989 35.9 1999 23.5 214.31 50.92 59.02 116,710.9 76,398.5

2000 23.7 203.96 49.29 57.06 77,048.7
2001 22.2 200.67 47.59 54.95 72,172.2
2002 23.2 197.20 46.11 53.23 75,423.2
2003 22.6 192.66 44.80 51.79 73,472.6
2004 20.4 184.69 43.42 50.29 66,320.4
2005 21 175.14 42.39 49.02 68,271.0
2006 18.4 173.18 41.29 47.72 59,818.4
2007 16.8 172.36 40.35 46.56 54,616.8
2008 17.6 165.98 39.57 45.37 57,217.6
2009 16.5 161.92 38.79 44.30 53,641.5
2010 15.1 158.17 38.08 43.30 49,090.1
2011 15.7 152.19 37.54 42.46 51,040.7
2012 14.4 146.46 36.90 41.22 46,814.4
2013 15.9 143.95 36.28 40.64 51,690.9
2014 15.1 138.56 35.72 40.07 49,090.1
2015 15.2 136.36 35.34 39.66 49,415.2
2016 13.5 133.26 34.88 39.12 43,888.5
2017 14.3 129.46 34.29 38.59 46,489.3

US: 1980­2017: US: 1990­2017:
Average over
sample period

25.71 23.29 201.58 46.60 53.06 105,527.5 75,725.1

Minimum over
sample period 13.5 13.5 129.46 34.29 38.59 86151.5 43,888.5

Per total inhabitants (2017 equivalent
population)2Per 100,000 inhabitants

Notes

*Data are from Centers for Disease Control (CDC) and Institute for Health Metrics (IHME)
at the University of Washington.
1. Let, Nit and Pit = total deaths and population per country i in year t. Then, uniform

average mortality = 100, 000 × (
195∑
i=1

Nit)/Pwt where Pwt is the world population for year t;

country level average mortality = 100, 000×
195∑
i=1

Nit/Pit; most affected country mortality =

100, 000 × (N/P )µt where (N/P )µt = max[(N/P )1t,(N/P )2t...(N/P )195,t] is maximum
fatality ratio for year t belonging to country µ.

2. Numbers reflect what would have been the equivalent total death for 2017 US
population of 325,100,000.
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Table 2. Maximum likelihood parameter estimates of the heavy tailed distributions*

Distribution types estimated X=
death per 100,000:

shape ξ (GEV & GPD) or
decay rate α (Pareto)

scale (σ) location μ (GEV) or
threshold μ (GPD)

PARETO 1.699 13.500
SE 0.209 0.585

95% CI (1.29, 2.11) (12.35, 14.64)
GEV ­0.75 9.58 24.81
SE 0.14 1.57 1.69

95% CI (­1.03, ­0.47) (6.50, 12.66) (21.50, 28.11)
GPD ­1.06 25.19 25.71
SE 0.01 NaN

95% CI (1.07, ­1.04) ­

PARETO 2.053 13.500
SE 0.370 0.582

95% CI (1.33, 2.78) (12.36, 14.64)
GEV 0.45 4.88 18.17
SE 0.34 1.20 1.31

95% CI (­0.22, 1.12) (2.52, 7.24) (15.61, 20.73)
GPD ­0.96 22.34 23.29
SE 0.00 0.18

95% CI (­0.96, ­.96) (21.9802, 22.7030)

PARETO 3.50 34.29
SE 0.56 0.55

95% CI (2.41, 4.60) (33.20, 35.38)
GEV 0.22 6.84 41.12
SE 0.33 1.56 1.83

95% CI (­0.43, 0.88) (3.78, 9.90) (37.53, 44.71)
GPD ­0.78 24.84 46.60
SE 0.24 6.65

95% CI ( ­1.25, ­0.31) (11.81, 37.86)

PARETO 3.36 38.59
SE 0.49 0.54

95% CI (2.41, 4.32) (37.52, 39.65)
GEV ­0.05 9.22 48.05
SE 0.37 2.17 2.57

95% CI (­0.77, 0.66) (4.97, 13.48) (43.01, 53.09)
GPD ­0.95 32.10 53.06
SE 0.01 0.44

95% CI (­0.96, ­0.93) (31.24, 32.96)

PARETO 2.47 129.46
SE 0.37 3.87

95% CI (1.74, 3.19) (121.88, 137.03)
GEV 0.17 39.87 171.69
SE 0.26 7.96 9.71

95% CI (­0.34, 0.69) (24.26, 55.48) (152.65, 190.73)
GPD ­0.68 131.89 201.58
SE 0.24 36.62

95% CI (­1.15, ­0.20) (60.11, 203.66)

most affected country per year: global data 1990­2017

Parameter estimates

data type & measure: US 1980­2017

data type & measure: US 1990­2017

uniform world average per year Global data: 1990­2017

cross country average per year: global data 1990­2017

*The location parameter for the GEV distribution is estimated as its other parameters. For
the GPD distribution, the threshold value is assumed based on the smallest observation
(minimum mortality rate) over the sample period as is seen in Table 1. See the text for the
detailed of the estimation methods.
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Table 3. Expected US mortality from respiratory contagions when considering global risk*
# of years replaced

Pareto Distribution Generalized Pareto
Distribution

Extreme Value
Distribution

Pareto Distribution Generalized Pareto
Distribution

Extreme Value
Distribution

0 26.32 24.92 24.87 85,566 80,999 80,850
(26.32,26.32) (24.92,24.92) (24.87,24.87)

1 31.09 29.09 41.20 101,066 94,559 133,926
(29.26,31.47) (27.68,30.87) (31.14,44.62)

2 37.74 37.63 148.60 122,690 122,349 483,101
(35.26,38.54) (33.20,47.03) (43.65,inf)

3 48.15 56.15 . 156,537 182,538 .
(42.50,50.06) (41.14,161.61) . .

4 66.47 123.67 . 216,097 402,042 .
(54.84,70.85) (51.94,inf) . . .

5 106.67 . . 346,786 . .
(76.88,121.02) . . . .

6 271.68 . . 883,241 . .
(129.59,408.04) . . . . .

7 . . . . . .
8 . . . . . .
9 . . . . . .
10 . . . . . .
11 . . . . . .
12 . 245.79 . . 799,070 .

. (94.12,inf) . . .
13 . 113.74 . . 369,764 .

. (99.77,inf) . . .
14 . 115.87 . . 376,698 .

. (105.40,126.07) . . .
15 . 120.98 . . 393,319 .

. (111.2,137.38) . . .
16 . 130.00 127.61 . 422,635 414,866

. (118.14,147.43) (115.43,inf) .
17 . 137.24 130.47 . 446,170 424,144

. (119.79,157.47) (121.62,140.30) .
18 . 141.12 137.49 . 458,786 446,994

. (122.12,162.16) (128.51,146.31) .
19 . 148.57 144.22 . 483,005 468,855

. (127.06,164.09) (135.32,152.77) .
20 . 153.81 150.70 . 500,022 489,932

. (130.14,167.78) (141.97,158.64) .
21 . 157.99 157.23 . 513,626 511,148

. (141.64,169.97) (148.61,164.94) .
22 . 160.10 163.72 . 520,475 532,261

. (145.08,170.44) (155.27,170.79) .
23 . 161.53 170.10 . 525,134 552,990

. (148.55,172.31) (162.42,176.50) .
24 . 162.66 176.52 . 528,802 573,852

. (148.97,172.57) (169.13,182.01) .
25 . 165.07 182.58 . 536,639 593,551

. (151.79,173.62) (176.31,187.03) .
26 . 165.08 189.11 . 536,673 614,783

. (152.01,177.96) (183.49,192.88) .
27 . 170.86 195.70 . 555,459 636,228

. (160.73,177.97) (191.73,197.44) .
28 217.80 207.96 202.78 708,064 676,070 659,237

(217.80,217.80) (207.96,207.96) (202.78,202.78)

Expected US mortality per 100,0001 Expected total US Mortality2

Notes
*Numbers in parenthesis are 95% simulated confidence intervals from 1000 runs for each
distribution fit for each replacement day. Dots (.) indicate that the expected mortality rate
is not finite.
1. Reported values are the medians of expected mortality from 1000 runs for each distrib-
ution. To construct 95% confidence intervals, we drop the smallest and largest 2.5%.
2. Expected total US death is calculated based on 2017 US population of 325,100,000.
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Figure 1. US historical excess death rates: 1910-2020

Source: New York Times, April 23, 2021
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Figures 2-3. The Hill estimators of the tail: US

Fig. 2 US 1980-2017

Fig 3. US 1990-2017

Note. The threshold values in Figures 2 and 3 are implied by the order statistic and
thus move inversely with the latter: Given a vector of 28 observations, ordered from
the highest to the lowest, the order statistic of 2 means that threshold is the second
highest value and the order statistic of 3 means that it is the third highest value, etc.
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Figures 4-6. The Hill estimators of the tail: the world

Figures 4 & 5. world country average and world uniform average, 1990-2017

Figure 6. world’s most affected country each year, 1990-2017

Notes.
1. For the definitions of the three measures used in these figures, see footnote 6 in
the main text.
2. Regarding the threshold values, see note on figures 2 and 3.
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Figure 7-8. Panel 1990-2017 and 195 countries. The Hill and Pareto estimates

Figure 7. The Hill estimators of the tail

Figure 8. Pareto shape parameter (decay rate)

Note on figure 7. For threshold values, see note on figures 2.
Note on Figure 8. The order statistics for Pareto distribution for the panel data
works similarly to the Hill estimator: For example, for k = 10 we use the 10 most
affected per year for a total of 28 years, yielding a vector of 280 observations. We
then estimate the Pareto distribution for that vector.
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Figures 9-11. Estimates of shape parameter for counterfactuals as
a function of years of replacing US data with the world’s most

affected country
(see notes following figure 11)

Figure 9. Pareto distribution (shape or decay rate)
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Figure 10. Generalized Pareto distribution
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Figure 11. Generalized Extreme Value distribution

Notes on Figures 9-11. Estimates were obtained by taking 28 years of US CDC data on mortalities
per 100,000 and replacing data points with the highest mortality rate for that year from the global
data. In the case of 0 years replaced, the dataset is just the US data. In the case of 28 years
replaced the dataset is just global annual most affected country rates. In between these extremes,
say for 3 years replaced, 3 year’s values from the global dataset are randomly selected. These three
values then are used to replace US data for that same year, creating a counterfactual vector of
observations that effectively shows, what if for those three random years, the US had a mortality
rate equal to the highest mortality rate observed globally in that year. This is done 1000 times,
because when the number of replacement years increase, the permutations of possible replacements
grows extremely large. The graphs show the median estimate of the shape parameter, with bands
for the estimated 95% of simulated cases (the middle 950 shape parameters). Estimates come from
having different years replaced, and thus represent the variety of point estimates seen.
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Figures 12-15.
Hill estimator of counterfactuals for # of random years (R) of letting US
mortality to mirror world’s most affected country, as a function of order

statistics (see notes)
Figure 12. R=2, k=1-27 Figure 13. R=3, k=1-27

Figure 14. R=13, k=1-27 Figure 15. R=14, k=1-27

Note on figures 12-15. For a given k, and R, if k > R, we replace R years of US data with the most
affected countries for each of the k years. Naturally, in the resulting order statistics the remaining k − R
years comes from US’s own mortality rates. Specifically, when k = R + 1, the entry of US’s own most
affected year when combined with R − k most affected country years produces a wide spread in the data
causing a jump in the tail estimate passed tail value of 1. See also the text.
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Appendix: Pareto Decay for k order statistics for each year of the data
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