Important Instructions:

The Answer Sheet is inside this Test Booklet. When you are directed to open the Test Booklet, take out the Answer Sheet and fill in the country of the Answer only.

Sheet and fill in the particulars on ORIGINAL Copy carefully with blue/black ball point pen only. The test is of 3 hours 20 minutes duration and the Test Booklet contains 200 multiple-choice questions (four options with a size of 2 minutes duration and the Test Booklet contains 200 multiple-choice questions options with a single correct answer) from Physics, Chemistry and Biology (Botany and Zoology). 50 questions in each subject as in each subject are divided into two Sections (A and B) as per details given below:

Section A shall consist of 35 (Thirty-five) Questions in each subject (Question Nos – 1 to 35, 51 to 85, 101 to 135 and 151 an

101 to 135 and 151 to 185). All questions are compulsory. Section B shall consist of 15 (Fifteen) questions in each subject (Question Nos – 36 to 50, 86 to 100, 136 to 150 and 186 to 200). In Carrier of 15 (Fifteen) in each and 186 to 200). In Section B, a candidate needs to attempt any 10 (Ten) questions out of 15 (Fifteen) in each

Candidates are advised to read all 15 questions in each subject of Section B before they start attempting the question paper. In the event of a candidate attempting more than ten questions, the first ten questions answered by the candidate shall be evaluated.

Each question carries 4 marks. For each correct response, the candidate will get 4 marks. For each incorrect response, one mark will be deducted from the total scores. The maximum marks are 720.

Use Blue/Black Ball Point Pen only for writing particulars on this page/marking responses on Answer Sheet. Rough work is to be done in the space provided for this purpose in the Test Booklet only.

5. On completion of the test, the candidate must hand over the Answer Sheet (ORIGINAL and OFFICE Copy) to the 6. Invigilator before leaving the Room/Hall. The candidates are allowed to take away this Test Booklet with them.

The CODE for this Booklet is \$3. Make sure that the CODE printed on the Original Copy of the Answer Sheet 7. is the same as that on this Test Booklet. In case of discrepancy, the candidate should immediately report the matter to the Invigilator for replacement of both the Test Booklet and the Answer Sheet.

The candidates should ensure that the Answer Sheet is not folded. Do not make any stray marks on the Answer Sheet. Do not write your Roll No. anywhere else except in the specified space in the Test Booklet/Answer Sheet.

Use of white fluid for correction is NOT permissible on the Answer Sheet.

10. Each candidate must show on-demand his/her Admit Card to the Invigilator.

11. No candidate, without special permission of the centre Superintendent or Invigilator, would leave his/her seat.

12. The candidates should not leave the Examination Hall without handing over their Answer Sheet to the Invigilator on duty and sign (with time) the Attendance Sheet twice. Cases, where a candidate has not signed the Attendance Sheet second time, will be deemed not to have handed over the Answer Sheet and dealt with as an Unfair

13. Use of Electronic/Manual Calculator is prohibited.

The candidates are governed by all Rules and Regulations of the examination with regard to their conduct in the Examination Room/Hall. All cases of unfair means will be dealt with as per the Rules and Regulations of this

15. No part of the Test Booklet and Answer Sheet shall be detached under any circumstances.

16. The candidates will write the Correct Test Booklet Code as given in the Test Booklet/Answer Sheet in the Attendance

Compensatory time of one hour five minutes will be provided for the examination of three hours and 20 minutes duration, whether such candidate (having a physical limitation to write) uses the facility of scribe or not.

Section - A (Physics)

- 1. Two resistors of resistance, 100 Ω and 200 Ω are connected in parallel in an electrical circuit. The ratio of the thermal energy developed in 100 Ω to that in 200 Ω in a given time is :
 - 1:4
 - (2)4:1
 - (3)1:2
 - (4)2:1
- 2. An ideal gas undergoes four different processes from the same initial state as shown in the figure below. Those processes are adiabatic, isothermal, isobaric and isochoric. The curve which represents the adiabatic process among 1, 2, 3 and 4 is:

- (1)3
- (2)4
- (3)1
- (4)
- 3. The ratio of the distances travelled by a freely falling body in the 1st, 2nd, 3rd and 4th second:
 - 41) 1:3:5:7
 - (2)1:1:1:1
 - (3)1:2:3:4
 - (4)1:4:9:16
- Given below are two statements: 4.

Statement I:

Biot-Savart's law gives us the expression for the magnetic field strength of an infinitesimal current element (Idl) of a current carrying conductor only.

Statement II:

Biot-Savart's law is analogous to Coulomb's inverse square law of charge q, with the former being related to the field produced by a scalar source, Idl while the latter being produced by a vector source, q.

In light of above statements choose the most appropriate answer from the options given

- Statement I is correct and Statement II is (1)incorrect
- Statement I is incorrect and Statement II is (2)correct
- Both Statement I and Statement II are correct (3)
- Both Statement I and Statement II are (4)incorrect

- A body of mass 60 g experiences a gravitational force 5. of 3.0 N, when placed at a particular point. The magnitude of the gravitational field intensity at that point is:
 - (1)20 N/kg
 - (2)180 N/kg
 - (3) $0.05\,\mathrm{N/kg}$
 - (4)50 N/kg
- The peak voltage of the ac source is equal to: 6.
 - $\sqrt{2}$ times the rms value of the ac source
 - $1/\sqrt{2}$ times the rms value of the ac source (2)
 - the value of voltage supplied to the circuit (3)
 - (4)the rms value of the ac source
- 7. The energy that will be ideally radiated by a 100 kW transmitter in 1 hour is:
 - (1) 36×10^{5} J
 - (2) 1×10^{5} J
 - (3) $36 \times 10^7 \text{ J}$
 - (4) $36 \times 10^4 \text{ J}$
- 8. A copper wire of length 10 m and radius $(10^{-2}/\sqrt{\pi})$ m has electrical resistance of 10 Ω . The current density in the wire for an electric field strength of $10 \, (V/m)$ is:
 - $10^{-5} \, \text{A/m}^2$ (1)
 - $10^5 \, A/m^2$ (2)
 - $10^4 \, A/m^2$ (3)
 - $10^6 \, A/m^2$ (4)
- 9. In half wave rectification, if the input frequency is 60 Hz, then the output frequency would be:
 - (1) 60 Hz
 - (2)120 Hz
 - (3)zero
 - (4)30 Hz
- If a soap bubble expands, the pressure inside the 10.
 - (1)remains the same
 - is equal to the atmospheric pressure (2)
 - (3)decreases
 - increases
- The ratio of the radius of gyration of a thin uniform 11. disc about an axis passing through its centre and normal to its plane to the radius of gyration of the disc about its diameter is:
 - 4:1
 - (2) $1:\sqrt{2}$

 - (4) $\sqrt{2}:1$

12. If the initial tension on a stretched string is doubled, then the ratio of the initial and final speeds of a transverse wave along the string is:

(3) 1:1

(4) $\sqrt{2}:1$

13. Two objects of mass 10 kg and 20 kg respectively are connected to the two ends of a rigid rod of length 10 m with negligible mass. The distance of the center of mass of the system from the 10 kg mass is:

(1) 10 m

(2) 5 m

(3) $\frac{10}{3}$ m

(4) $\frac{20}{3}$ m

14. The graph which shows the variation of the de Broglie wavelength (λ) of a particle and its associated momentum (p) is:

(3) ^λ _{p→}

15. A long solenoid of radius 1 mm has 100 turns per mm. If 1 A current flows in the solenoid, the magnetic field strength at the centre of the solenoid is:

(1) $12.56 \times 10^{-4} \text{ T}$

(2) $6.28 \times 10^{-4} \text{ T}$

(3) $6.28 \times 10^{-2} \text{ T}$

(4) $12.56 \times 10^{-2} \text{ T}$

16. A light ray falls on a glass surface of refractive index $\sqrt{3}$, at an angle 60°. The angle between the refracted and reflected rays would be:

(1) 90°

(2) 120°

(3) 30°

(4) 60°

K TYN

17. A shell of mass m is at rest initially. It explodes into three fragments having mass in the ratio 2:2:1. If the fragments having equal mass fly off along mutually perpendicular directions with speed v, the speed of the third (lighter) fragment is:

(1) $2\sqrt{2} v$

(2) $3\sqrt{2} v$

(3) v

(4) $\sqrt{2} v$

18. In a Young's double slit experiment, a student observes 8 fringes in a certain segment of screen when a monochromatic light of 600 nm wavelength is used. If the wavelength of light is changed to 400 nm, then the number of fringes he would observe in the same region of the screen is:

19. An electric lift with a maximum load of 2000 kg (lift + passengers) is moving up with a constant speed of 1.5 ms^{-1} . The frictional force opposing the motion is 3000 N. The minimum power delivered by the motor to the lift in watts is: $(g = 10 \text{ ms}^{-2})$

(1) 34500

(2) 23500

(3) 23000

(4) 20000

20. Plane angle and solid angle have:

(1) No units and no dimensions

(2) Both units and dimensions

(3) Units but no dimensions

(4) Dimensions but no units

21. In the given nuclear reaction, the element X is:

 $^{22}_{11}\text{Na} \rightarrow X + e^{\ddagger}) 1$

(1) $\frac{22}{10}$ Ne

(2) 22₁₂Mg

(3) $^{23}_{11}$ Na

(4) $^{23}_{10}$ Ne

- When light propagates through a material medium 22 of relative permittivity ϵ_r and relative permeability μ_r , the velocity of light, v is given by : (c - velocity of light in vacuum)

 - (4)
- 23. As the temperature increases, the electrical resistance:
 - increases for conductors but decreases for (X) semiconductors
 - decreases for conductors but increases for (2)semiconductors
 - increases for both conductors and (3)semiconductors
 - decreases for both conductors and (4) semiconductors
- The dimensions $[MLT^{-2}A^{-2}]$ belong to the: 24.
 - magnetic permeability (1)
 - electric permittivity (2)
 - magnetic flux (3)
 - self inductance (4)
- The angle between the electric lines of force and the 25. equipotential surface is:
 - 90° (1)
 - 180° (2)
 - 0° (3)
 - 45° (4)

- Let T1 and T2 be the energy of an electron in the first 26. and second excited states of hydrogen atom, respectively. According to the Bohr's model of an atom, the ratio $T_1: T_2$ is:
 - (1)
 - 9:4
 - 1:4
 - 4:1

PN (a) PN (b) NP

In the given circuits (a), (b) and (c), the potential drop across the two p-n junctions are equal 32.

- Circuit (c) only (1)
- Both circuits (a) and (c) (2)
- Circuit (a) only (3)
- Circuit (b) only (4)
- A biconvex lens has radii of curvature, 20 cm each. If the refractive index of the material of the lens is 28. 1.5, the power of the lens is:
 - +5D(1)
 - infinity (2)
 - +2D(3)
 - +20 D (4)

The

un

31.

- When two monochromatic lights of frequency, v and 29. are incident on a photoelectric metal, their stopping potential becomes $\frac{V_s}{2}$ and V_s respectively. The threshold frequency for this metal is:
 - (1)

 - 2ν (8)
 - 30 (4)

30.

A spherical ball is dropped in a long column of a highly viscous liquid. The curve in the graph shown, which represents the speed of the ball (v) as a function of time (t) is:

- C (1)
- D (2)
- (3)
- B (4)

22

- The angular speed of a fly wheel moving with uniform angular acceleration changes from 1200 31. rpm to 3120 rpm in 16 seconds. The angular acceleration in rad/s2 is:
 - 12π (1)
 - 104π (2)
 - (3) 2π
 - 4π (4)

- A square loop of side 1 m and resistance 1 placed in a magnetic field of 0.5 T. If the plane of 32. loop is perpendicular to the direction of magnetice field, the magnetic flux through the loop is:
 - 1 weber (1)
 - zero weber
- (2)2 weber ' 0.5 weber (4)
- The displacement-time graphs of two moving 33. particles make angles of 30° and 45° with the x-axis as shown in the figure. The rafts of their respective velocity is:

Match List - I with List - II:

List - I		List - II (Wavelength)	
(Electromagnetic waves)			
(a)	AM radio waves	(i)	10 ⁻¹⁰ m
(b)	Microwaves	(ii)	10 ² m
(c)	Infrared radiations	(iii)	10 ⁻² m
(4)	X-rays	(iv)	10 ⁻⁴ m
Cho	ose the correct answer fi	rom the o	ptions give

en below:

- (a) (iii), (b) (iv), (c) (ii), (d) (i) (1)
- (a) (ii), (b) (iii), (c) (iv), (d) (i) (2)
- (a) (iv), (b) (iii), (c) (ii), (d) (i) (3)
- (a) (iii), (b) (ii), (c) (i), (d) (iv) (4)

- Two hollow conducting spheres of radii R_1 and R_2 35. (R₁>>R₂) have equal charges. The potential would
 - equal on both the spheres (1)
 - dependent on the material property of the (2)sphere
 - more on bigger sphere (3)
 - more on smaller sphere (4)

Section - B (Physics)

A capacitor of capacitance C=900 pF is charged 36. fully by 100 V battery B as shown in figure (a). Then it is disconnected from the battery and connected to another uncharged capacitor of capacitance C = 900 pF as shown in figure (b). The electrostatic energy stored by the system (b) is:

- $2.25 \times 10^{-6} \text{ J}$ (1)
- 1.5×10^{-6} J (2)
- $4.5 \times 10^{-6} \text{ J}$ (3)
- 3.25×10^{-6} I (4)
- The volume occupied by the molecules contained in 37. 4.5 kg water at STP, if the intermolecular forces vanish away is:
 - $5.6 \times 10^{-3} \text{ m}^3$ (1)
 - $5.6 \, \mathrm{m}^3$ (2)
 - $5.6 \times 10^6 \text{ m}^3$ (3)
 - $5.6 \times 10^3 \text{ m}^3$ (4)

List-II

Match List - I with List - II: 38.

		List-I	List-II
ě	(a)	Gravitational (i) constant (G)	$[L^2T^{-2}]$
	(b)	Gravitational (ii)	$[M^{-1}L^3T^{-2}]$
	(c)	Gravitational (iii)	[LT ⁻²]
	(d)	Gravitational (iv) intensity	$[ML^2T^{-2}]$

Choose the correct answer from the options given below:

- (a) (ii), (b) (iv), (c) (iii), (d) (i) (1)
- (a)-(iv), (b)-(ii), (c)-(i), (d)-(iii) (2)
- (a) (ii), (b) (i), (c) (iv), (d) (iii) (3)
- (a) (ii), (b) (iv), (c) (i), (d) (iii)

A wheatstone bridge is used to determine the value 39. of unknown resistance X by adjusting the variable resistance Y as shown in the figure. For the most precise measurement of X, the resistances P and Q:

- (1)should be very large and unequal
- (2)do not play any significant role
- (3)should be approximately equal to 2X
- (4) should be approximately equal and are small
- 40. The area of a rectangular field (in m2) of length 55.3 m and breadth 25 m after rounding off the value for correct significant digits is:
 - (1)1382.5
 - (2) 14×10^{2}
 - (3) 138×10^{1}
 - 1382
- Given below are two statements: One is labelled as Assertion (A) and the other is labelled as Reason (R).

Assertion (A):

The stretching of a spring is determined by the shear modulus of the material of the spring.

Reason (R):

A coil spring of copper has more tensile strength than a steel spring of same dimensions.

In the light of the above statements, choose the most appropriate answer from the options given below:

- (1) (A) is true but (R) is false
- (2) (A) is false but (R) is true
- Both (A) and (R) are true and (R) is the correct (3)explanation of (A)
- (4)Both (A) and (R) are true and (R) is not the correct explanation of (A)

- From Ampere's circuital law for a long straight wire of circular current, of circular cross-section carrying a steady current, the variation of 42. the variation of magnetic field in the inside and outside region of the wire is:
 - a linearly increasing function of distance r upto the boundary of the wire and then decreasing one with 1/r dependence for the
 - a linearly decreasing function of distance upto the boundary of the wire and then a linearly (2)increasing one for the outside region.
 - uniform and remains constant for both the (3)
 - a linearly increasing function of distance upto (4)the boundary of the wire and then linearly decreasing for the outside region.
- Two pendulums of length 121 cm and 100 cm start 43. vibrating in phase. At some instant, the two are at their mean position in the same phase. The minimum number of vibrations of the shorter pendulum after which the two are again in phase at the mean position is:
 - 10
 - (2)8
 - (3) 11
 - (4)
- Two point charges -q and +q are placed at a 44. distance of L, as shown in the figure.

The magnitude of electric field intensity at a distance R (R>>L) varies as:

- (1)
- (2)
- - (4)
- 45. A series LCR circuit with inductance 10 H, capacitance 10 μ F, resistance 50 Ω is connected to an ac source of voltage, $V = 200 \sin(100 t)$ volt. If the resonant frequency of the LCR circuit is vo and the frequency of the ac source is v, then:

(2)
$$v_o = \frac{50}{\pi} \text{ Hz}, v = 50 \text{ Hz}$$
 $cu_2 2\pi f$
(2) $v = 100 \text{ Hz}; v_o = \frac{100}{\pi} \text{ Hz}$ f

- $v_0 = v = 50 \,\text{Hz}$
 - $v_0 = v = \frac{50}{\pi} \text{ Hz}$

(x) 5:4

(2) 25:16

(3) 1:1

A ball is projected with a velocity, 10 ms⁻¹, at an angle of 60° with the vertical direction. Its speed at the highest point of its trajectory will be:

(x) 5 ms⁻¹

(2) 10 ms⁻¹

(3) Zero

(1)

(M) 5√3 ms

8. LA

1 1 0 A B C 0 0 0

0

 $\begin{array}{c|ccccc}
0 & 1 & 1 \\
1 & 0 & 0 \\
1 & 1 & 1
\end{array}$

A B C 0 0 1 0 1 0

49. Two transparent media A and B are separated by a plane boundary. The speed of light in those media are 1.5×10^8 m/s and 2.0×10^8 m/s, respectively. The critical angle for a ray of light for these two media is:

(1) $\tan^{-1}(0.500)$

(2) $tan^{-1}(0.750)$

(3) $\sin^{-1}(0.500)$

(4) $\sin^{-1}(0.750)$

A = 2 153 2

4 1911 32

50. A big circular coil of 1000 turns and average radius 10 m is rotating about its horizontal diameter at 2 rad s⁻¹. If the vertical component of earth's magnetic field at that place is 2×10^{-5} T and electrical resistance of the coil is 12.56Ω , then the maximum induced current in the coil will be:

(1) 1 A

(2) 2 A

(3) 0.25 A

(4) 1.5 A

Section - A (Chemistry)

51. Given below are half cell reactions:

 $E_{Mn^{2+}/MnO_{4}}^{0} = -1.510 \text{ V}$ $Mn^{2+} + 4 H_{2}O$, $Mn^{2+}/MnO_{4}^{0} = -1.510 \text{ V}$

 $\frac{1}{2} \stackrel{\circ}{O_2} + 2 H^+ + 2 e^- \rightarrow H_2O,$

 $E_{O_2/H_2O}^{\circ} = + 1.223 \text{ V}$

Will the permanganate ion, MnO₄ liberate O₂ from water in the presence of an acid?

Yes, because $E_{cell}^{\circ} = +2.733 \text{ V}$

(2) No, because $E_{\text{cell}}^{\circ} = -2.733 \text{ V}$

(3) Yes, because $E_{cell}^{\circ} = +0.287 \text{ V}$

(4) No, because $E_{\text{cell}}^{\circ} = -0.287 \text{ V}$

Identify the incorrect statement from the following

Ionisation enthalpy of alkalimetals decreases

Ionisation enthalpy of alkali metals decreases from top to bottom in the group.

(2) Lithium is the strongest reducing agent among the alkali metals.

(3) Alkali metals react with water to form their hydroxides.

(4) The oxidation number of K in KO_2 is +4. 2 = 4

53. Identify the incorrect statement from the following.

(1) In an atom, all the five 3d orbitals are equal in energy in free state.

(2) The shapes of d_{xy} , d_{yz} , and d_{zx} orbitals as similar to each other; and d_{x}^{2} and d_{yz}^{2} and d_{yz}^{2} and d_{zz}^{2}

(3) All the five 5d orbitals are different in when compared to the respective 4d orb

All the five 4d orbitals have shapes sim the respective 3d orbitals.

	8	
53	Gadolinium has a low value of third ionisation	59
54.	anthalpy because of	21)
	(1) high electronegativity	
	(2) high basic character	
Spirit file	(3) small size	
	(4) high exchange enthalpy	
55.	The IUPAC name of an element with atomic number	
	119 is (1) unununnium	TH
	The state of the s	0.53
1	(2) ununoctium	
	(4) ununennium (4) unnilennium (5)	Į
	(4) unnilennium	
56.	Match List - I with List - II.	a
	List-II	
	(Hydrides) (Nature)	
	/ (tarme)	1
112	(-) Election precise	1 -
A.	(a) Liection dencient	17
1	(d) HF (iii) Electron rich (iv) Ionic	
	Choose the correct answer from the options given	
	below:	
	(1) (a) - (i), (b) - (ii), (c) - (iv), (d) - (iii)	1 3
	(2) (a) $-(ii)$, (b) $-(iii)$, (c) $-(iv)$, (d) $-(i)$	
	(3) (a) - (iv), (b) - (i), (c) - (ii), (d) - (iii)	
	(4) (a) - (iii), (b) - (i), (c) - (ii), (d) - (iv)	
,	A S. T. THES - I COM - LONG AND A	
1	7). RMgX + CO ₂ $\xrightarrow{\text{dry}}$ Y $\xrightarrow{\text{H}_3\text{O}^+}$ RCOOH	
ma	What is Y in the above reaction?	1
30	(1) RCOO-X+	1
0	(2) $(RCOO)_2Mg$	
B	(3) RCOO-Mg+X	
10.	(4) $R_3CO^-Mg^+X$	
B R5	3. Match List - I with List - II.	1
0,9%	2 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
6 1	Zist-II.	
کر ج	(2) A)
2.	(b) A-171 (c) Salvaisail	
1/2/4	(a) A 1	
	(c) Analgesics (iii) Cimetidine (d) Antimicrobials (iv) Soldens	
expir	(IV) Seldane	
-	Choose the correct answer from the options give below:	en
	(1) (a) - (i), (b) - (iv), (c) - (ii), (d) - (iii)	
	(2) (a) - (iv), (b) - (iii), (c) - (i), (d) - (ii)	
	(3) (a) - (iii), (b) - (ii), (c) - (iv), (d) - (i)	
	(((((((((((((((((((

(a) - (iii), (b) - (iv), (c) - (ii), (d) - (i)

- 59. Which of the following statement is **not** correct about diborane?
 - (1) The four terminal Hydrogen atoms and the two Boron atoms lie in one plane.
 - (2) Both the Boron atoms are sp^2 hybridised.
 - (3) There are two 3-centre-2-electron bonds.

The four terminal B-H bonds are two centre two electron bonds.

The incorrect statement regarding enzymes is:

- Enzymes are polysaccharides.
- (2) Enzymes are very specific for a particular reaction and substrate.
- (3) Enzymes are biocatalysts.
- (4) Like chemical catalysts enzymes reduce the activation energy of bio processes.
- 61. Given below are two statements: one is labelled as Assertion (A) and the other is labelled as Reason (R).

Assertion (A):

In a particular point defect, an ionic solid is electrically neutral, even if few of its cations are missing from its unit cells.

Reason (R):

In an ionic solid, Frenkel defect arises due to dislocation of cation from its lattice site to interstition site, maintaining overall electrical neutrality.

In the light of the above statements, choose the most appropriate answer from the options given below

- (1) (A) is correct but (R) is not correct
- (2) (A) is not correct but (R) is correct
- (3) Both (A) and (R) are correct and (R) is the correct explanation of (A)
- (4) Both (A) and (R) are correct but (R) is not the correct explanation of (A)

Which of the following p-V curve represents maximum work done?

Given below are two statements: 63.

Statement I:

Primary aliphatic amines react with HNO₂ to give unstable diazonium salts.

Statement II:

Primary aromatic amines react with HNO2 to form diazonium salts which are stable even above 300 K.

In the light of the above statements, choose the most appropriate answer from the options given below.:

- Statement I is correct but Statement II is incorrect.
- Statement I is incorrect but Statement II is correct.

Both Statement I and Statement II are correct.

Both Statement I and Statement II are incorrect.

The IUPAC name of the complex -64.

 $[Ag(H_2O)_2][Ag(CN)_2]$ is:

- dicyanidosilver(I) diaquaargentate(I) %>
- diaquasilver(I) dicyanidoargentate(I) (2)
- dicyanidosilver(II) diaquaargentate(II)

diaquasilver(II) dicyanidoargentate(II)

Which compound amongst the following is not an 65. aromatic compound?

Given below are two statements: 66.

Statement I:

In the coagulation of a negative sol, the flocculating power of the three given ions is in the order-

$$Al^{3+} > Ba^{2+} > Na^{+}$$

Statement II:

In the coagulation of a positive sel, the flocculating power of the three given salts is in the order-

In the light of the above statements, choose the most appropriate answer from the options given below:

- Statement I is correct but Statement II is
- Statement I is incorrect but Statement II is (2)correct.
- Both Statement I and Statement II are correct. (3)
- Both Statement I and Statement II are (4) incorrect.

Match List - I with List - II. 67. List-II List-I absorbent for carbon dioxide Li (a) electrochemical cells Na (b) coolant in fast breeder reactors KOM (iii) (c) photoelectric cell (iv) Cs (d) Choose the correct answer from the options given below: (a) - (i), (b) - (iii), (c) - (iv), (d) - (ii) (1) (a) - (ii), (b) - (iii), (c) - (i), (d) - (iv) (2X (3)(a) - (iv), (b) - (i), (c) - (iii), (d) - (ii) (4) (a) - (iii), (b) - (iv), (c) - (ii), (d) - (i) 68. Given below are two statements: one is labelled as Assertion (A) and the other is labelled as Reason (R). Assertion (A): ICl is more reactive than I2. Reason (R): I-CI bond is weaker than I-I bond. In the light of the above statements, choose the most appropriate answer from the options given below: (1) (A) is correct but (R) is not correct. (2)(A) is not correct but (R) is correct. Both (A) and (R) are correct and (R) is the (8) correct explanation of (A). Both (A) and (R) are correct but (R) is not the (4) correct explanation of (A). 69. Amongst the following which one will have maximum 'lone pair - lone pair' repulsions? 6+TX4 - 484 SF₄ XeF2 (3)CIF₃ 1×4.29 Given below are two statements: Statement I: The acidic strength of monosubstituted nitrophenol is higher than phenol because of electron withdrawing nitro group. Statement II: o-nitrophenol, m-nitrophenol and p-nitrophenol will have same acidic strength as they have one miro group attached to the phenolic ring In the light of the above statements, choose the most appropriate answer from the options given below: Statement I is correct but Statement II is incorrect. Statement I is incorrect but Statement II is

(3)

(4)

incorrect.

Both Statement I and Statement II are correct.

Both Statement I and Statement II are

Which one is not correct mathematical equation for 71. Dalton's Law of partial pressure? Here p = total pressure of gaseous mixture $p_i = \chi_i p$, where p_i = partial pressure of ith gas $\chi_i = \text{mole fraction of } i^{\text{th}}$ gas in gaseous mixture $p_i = \chi_i p_i^o$, where $\chi_i = \text{mole fraction of } i^{\text{th}}$ gas in gaseous mixture $p_i^o = pressure of i^{th} gas$ $p = p_1 + p_2 + p_3$ $p = n_1 \frac{RT}{V} + n_2 \frac{RT}{V} + n_3 \frac{RT}{V}$ (4)72. Given below are two statements: Statement I: The boiling points of the following hydrides of group 16 elements increases in the order -H₂O < H₂S, < H₂Se < H₂Te. Statement II: The boiling points of these hydrides increase with increase in molar mass. In the light of the above statements, choose the most appropriate answer from the options given below: Statement I is correct but Statement II is incorrect Statement I is incorrect but Statement II is (2)correct Both Statement I and Statement II are correct M(3) Both Statement I and Statement II are (4) incorrect In one molal solution that contains 0.5 mole of a 73. solute, there is 100 mL of solvent (1) 1000 g of solvent (2)500 mL of solvent (3)(4) 500 g of solvent Choose the correct statement: Diamond is sp3 hybridised and graphite is sp2 hybridized.

Both diamond and graphite are used as dry

Diamond and graphite have two dimensional

Diamond is covalent and graphite is ionic.

(2)

(3)

(4)

lubricants.

network.

The incorrect statement regarding chirality is: 83.

- Enantiomers are superimposable mirror (1)images on each other.
- A racemic mixture shows zero optical rotation.
 - $S_N 1$ reaction yields 1:1 mixture of both (3)enantiomers.
 - The product obtained by S_N2 reaction of haloalkane having chirality at the reactive site (4)shows inversion of configuration.
- The Kjeldahl's method for the estimation of nitrogen can be used to estimate the amount of nitrogen in 84. which one of the following compounds?

which one of
$$\frac{1}{S^{-1}}$$
 $\frac{1}{S^{-1}}$ $\frac{1}{S$

At 298 K, the standard electrode potentials of Cu²⁺/ 85. Cu, Zn^{2+}/Zn , Fe^{2+}/Fe and Ag^{+}/Ag are 0.34 V, -0.76 V, -0.44 V and 0.80 V, respectively.

On the basis of standard electrode potential, predict which of the following reaction can not occur? $FeSO_4(aq) + Zn(s) \rightarrow ZnSO_4(aq) + Fe(s)$ $2CuSO_4(aq) + 2Ag(s) \rightarrow 2Gu(s) + Ag_2SO_4(aq)$ $CuSO_4(aq) + Zn(s) \rightarrow ZnSO_4(aq) + Cu(s)$ $CuSO_4(aq) + Fe(s) \rightarrow FeSO_4(aq) + Cu(s)$

Section - B (Chemistry)

Match List - I with List - II. 86. List-II List-I (Composition) (Ores) Fe_3O_4

- Haematite (a) ZnCO₃ Magnetite
- (b) Fe_2O_3 (iii) Calamine (c)

[Al2(OH)4Si20 (iv) Kaolinite Choose the correct answer from the options gi (d)

- below: (a) - (iii), (b) - (i), (c) - (iv), (d) - (ii)
- (1)(a) - (i), (b) - (iii), (c) - (ii), (d) - (iv),
- (2)(a) - (i), (b) - (ii), (c) - (iii), (d) - (iv) (3)
- (a) (iii), (b) (i), (c) (ii), (d) (iv) 4
- Which one of the following is not formed w acetone reacts with 2-pentanone in the presence 87. dilute NaOH followed by heating?

 CH_3 (1) CH₂ CH_3 CH_3 (3) H₃C CH_3 CH_3 (4)

Given below are two statements: 88.

Statement I:

In Lucas test, primary, secondary and tertialcohols are distinguished on the basis of the reactivity with conc. HCl + ZnCl2, known as Lu Reagent. -

Statement II:

Primary alcohols are most feactive and immediat produce turbidity at room temperature on react with Lucas Reagent.

In the light of the above statements, choose the m appropriate answer from the options given belo

- Statement I is correct but Statement II (1) incorrect. V.
- Statement I is incorrect but Statement II (2) correct.
- Both Statement I and Statement II are corre (3)
- Both Statement I and Statement II a (4) incorrect.

1 2 3 3	01 (08), or reduced 1 10 10 10 10 10
05:82= 8×3×3.	D-04 18 -0.01 Jorg 50 182 38 -01
05.00	S 1 53
164 1/0 1	3 The with cell edge
(89 If radius of second Bohr or lift of the He + ion is 105.8	95. Copper crystallises in fcc unit cell with cell edge
pm, what is the radius of third Bohr orbit of Li2+	95. Copper crystallises in ice unit cent was of copper is length of 3.608×10^{-8} cm. The density of copper.
ion? $\frac{\partial^2 A^2}{\partial x^2}$	length of 3.608×10^{-3} Calculate the atomic mass of copper. 8.92 g cm ⁻³ . Calculate the atomic mass of copper.
シュナシ ハカ・マ	(4) (1) 60 u
1/2/201	(2) 65 u z y x y (3)
	(3) 63.1 u 2 · Ky.
158.7 pm	The state of the s
(4) 15.87 pm	(4) 31.55 u
90. A 10.0 L flask contains 64 g of oxygen at 27°C.	The pollution due to oxides of sulphur gets
90. A 10.0 L flask contains 64 g of oxygen at 2 (Assume O ₂ gas is behaving ideally). The pressure	enhanced due to the present
	(a) particulate matter
inside the flask in bar is (Given $R = 0.0831 L bar K^{-1} mol^{-1}$) ($\frac{3}{4}$)	MALE TO THE RESERVE THE SECOND
	hydrocarbons .
1 10	- arayide V
4.9	(d) hydrogen peroxide . Choose the most appropriate answer from the
(3) 2.5	options given below:
(4) 498.6	options given below
91. Find the emf of the cell in which the following	(1) (b), (c), (d) only
reaction takes place at 298 K reaction takes place 298 K	(2) (à), (c), (d) only
	(3) (a),(d) only
Ni(s) + 2 Ag ⁺ (0.001 M) \rightarrow Ni (0.002 M) (Given that $E_{cell}^{\circ} = 10.5 \text{ V}$, $\frac{2.303 \text{ RT}}{F} = 0.059 \text{ at}$	(4) (a), (b), (d) only
(Given that Leell 1997)	97. The product formed from the following reaction
298 K)	97. The product formed from 25 sequence is
Vn 0.9615 V	
(2) 1.05 V	CN (i) LiAlH ₄ , H ₂ O
(3) 1.0385 V	(ii) NaNO ₂ +HCl
	The Later of the Control of the Cont
(4) 1385 V	
(4) 1385 V	(iii) H ₂ O
(4) 1.385 V 92. The correct IUPAC name of the following compound	
92. The correct IUPAC name of the following compound is:	(iii) H ₂ O
92. The correct IUPAC name of the following compound is:	
92. The correct IUPAC name of the following compound is: OH Br	(iii) H ₂ O
92. The correct IUPAC name of the following compound is: OH Br Br Br A thyl 5-chlorohexan-3-ol	$\begin{array}{c c} \hline \\ \hline $
92. The correct IUPAC name of the following compound is: OH Br (1) 1-bromo-4-methyl-5-chlorohexan-3-ol (2) 2-chlorohexan-4-ol	$(1) \qquad \qquad CI$
92. The correct IUPAC name of the following compound is: OH 1-bromo-4-methyl-5-chlorohexan-3-ol (2) 6-bromo-4-methyl-2-chlorohexan-3-ol	$\begin{array}{c c} \hline \\ \hline $
(4) 1.385 V 92. The correct IUPAC name of the following compound is: OH (1) 1-bromo-4-methyl-5-chlorohexan-3-ol (2) 6-bromo-4-methyl-2-chlorohexan-4-ol (3) 1-bromo-5-chloro-4-methylhexan-3-ol	$\begin{array}{c c} \hline \\ \hline $
(4) 1.385 V 92. The correct IUPAC name of the following compound is: OH (1) 1-bromo-4-methyl-5-chlorohexan-3-ol (2) 6-bromo-4-methyl-2-chlorohexan-4-ol 1-bromo-5-chloro-4-methylhexan-3-ol (3) 1-bromo-5-chloro-4-methylhexan-4-ol (4) 6-bromo-2-chloro-4-methylhexan-4-ol	(iii) H ₂ O (1) OH NH ₂
92. The correct IUPAC name of the following compound is: OH (1) 1-bromo-4-methyl-5-chlorohexan-3-ol (2) 6-bromo-4-methyl-2-chlorohexan-4-ol 1-bromo-5-chloro-4-methylhexan-3-ol (4) 6-bromo-2-chloro-4-methylhexan-4-ol The change in oxidation	(iii) H ₂ O
92. The correct IUPAC name of the following compound is: OH (1) 1-bromo-4-methyl-5-chlorohexan-3-ol (2) 6-bromo-4-methyl-2-chlorohexan-4-ol 1-bromo-5-chloro-4-methylhexan-3-ol (4) 6-bromo-2-chloro-4-methylhexan-4-ol The change in oxidation	(iii) H ₂ O (1) OH NH ₂
92. The correct IUPAC name of the following compound is: OH (1) 1-bromo-4-methyl-5-chlorohexan-3-ol (2) 6-bromo-4-methyl-2-chlorohexan-4-ol (3) 1-bromo-5-chloro-4-methylhexan-3-ol (4) 6-bromo-2-chloro-4-methylhexan-4-ol (5) In the neutral or faintly alkaline medium, KMnO ₄ oxidises iodide into iodate. The change in oxidation state of manganese in this reaction is from	$(1) \qquad \qquad CI \qquad CI \qquad OH \qquad O$
92. The correct IUPAC name of the following compound is: (1) 1-bromo-4-methyl-5-chlorohexan-3-ol (2) 6-bromo-4-methyl-2-chlorohexan-4-ol (3) 1-bromo-5-chloro-4-methylhexan-3-ol (4) 6-bromo-2-chloro-4-methylhexan-4-ol (5) In the neutral or faintly alkaline medium, KMnO ₄ oxidises iodide into iodate. The change in oxidation state of manganese in this reaction is from	(iii) H ₂ O (1) OH NH ₂
92. The correct IUPAC name of the following compound is: (1) 1-bromo-4-methyl-5-chlorohexan-3-ol (2) 6-bromo-4-methyl-2-chlorohexan-4-ol (3) 1-bromo-5-chloro-4-methylhexan-3-ol (4) 6-bromo-2-chloro-4-methylhexan-4-ol (5) In the neutral or faintly alkaline medium, KMnO ₄ oxidises iodide into iodate. The change in oxidation state of manganese in this reaction is from (7) +7 to +3 (2) +6 to +5 (3) 1-2-2	$(1) \qquad \qquad CI \qquad CI \qquad OH \qquad O$
92. The correct IUPAC name of the following compound is: (1) 1-bromo-4-methyl-5-chlorohexan-3-ol (2) 6-bromo-4-methyl-2-chlorohexan-4-ol (3) 1-bromo-5-chloro-4-methylhexan-3-ol (4) 6-bromo-2-chloro-4-methylhexan-4-ol (5) In the neutral or faintly alkaline medium, KMnO ₄ oxidises iodide into iodate. The change in oxidation state of manganese in this reaction is from (7) +7 to +3 (2) +6 to +5 (3) +7 to +4	(1) OH (2) OH (3) OH
92. The correct IUPAC name of the following compound is: (1) 1-bromo-4-methyl-5-chlorohexan-3-ol (2) 6-bromo-4-methyl-2-chlorohexan-4-ol (3) 1-bromo-5-chloro-4-methylhexan-3-ol (4) 6-bromo-2-chloro-4-methylhexan-4-ol (5) In the neutral or faintly alkaline medium, KMnO4 oxidises iodide into iodate. The change in oxidation state of manganese in this reaction is from (7) +7 to +3 (2) +6 to +5 (3) +7 to +4 (4) +6 to +4	(1) $(iii) H_2O$ (1) OH (3) NH_2 (4) OH NH_2 NH
92. The correct IUPAC name of the following compound is: (1) 1-bromo-4-methyl-5-chlorohexan-3-ol (2) 6-bromo-4-methyl-2-chlorohexan-4-ol (3) 1-bromo-5-chloro-4-methylhexan-3-ol (4) 6-bromo-2-chloro-4-methylhexan-4-ol (5) In the neutral or faintly alkaline medium, KMnO4 oxidises iodide into iodate. The change in oxidation state of manganese in this reaction is from the faintly alkaline medium, KMnO4 oxidises iodide into iodate. The change in oxidation state of manganese in this reaction is from the faintly alkaline medium, KMnO4 oxidises iodide into iodate. The change in oxidation state of manganese in this reaction is from the faintly alkaline medium, KMnO4 oxidises iodide into iodate. The change in oxidation state of manganese in this reaction is from the faintly alkaline medium, KMnO4 oxidises iodide into iodate. The change in oxidation state of manganese in this reaction is from the faintly alkaline medium, KMnO4 oxidises iodide into iodate. The change in oxidation state of manganese in this reaction is from the faintly alkaline medium, KMnO4 oxidises iodide into iodate. The change in oxidation state of manganese in this reaction is from the faintly alkaline medium, KMnO4 oxidises iodide into iodate. The change in oxidation state of manganese in this reaction is from the faintly alkaline medium, KMnO4 oxidises iodide into iodate. The change in oxidation state of manganese in this reaction is from the faintly alkaline medium, in the faintly al	(1) $(iii) H_2O$ (1) OH (3) NH_2 (4) OH (4) OH (5) OH (6) OH (7) OH (8) OH (9) OH (9) OH (9) OH (1) OH (1) OH (2) OH (3) OH (4) OH (4) OH (5) OH (6) OH (7) OH (8) OH (9) OH (9) OH (9) OH (10) OH (11) OH (12) OH (13) OH (14) OH (15) OH (16) OH (17) OH (17) OH (18) OH (19) OH (19
92. The correct IUPAC name of the following compound is: (1) 1-bromo-4-methyl-5-chlorohexan-3-ol (2) 6-bromo-4-methyl-2-chlorohexan-4-ol (3) 1-bromo-5-chloro-4-methylhexan-3-ol (4) 6-bromo-2-chloro-4-methylhexan-4-ol (5) (6) In the neutral or faintly alkaline medium, KMnO4 oxidises iodide into iodate. The change in oxidation state of manganese in this reaction is from (4) +7 to +3 (2) +6 to +5 (3) +7 to +4 (4) +6 to +4 (5) A SO ₂ (g) = 2 O ₃ (g) (6) The above reaction at 298 K, K _c is found to be for the above reaction at 298 K, K _c at equilibrium	(iii) H ₂ O (i) (i) (i) (i) (i) (ii) (ii) (ii) (ii) (ii) (iii) (iii
92. The correct IUPAC name of the following compound is: (1) 1-bromo-4-methyl-5-chlorohexan-3-ol (2) 6-bromo-4-methyl-2-chlorohexan-4-ol (3) 1-bromo-5-chloro-4-methylhexan-3-ol (4) 6-bromo-2-chloro-4-methylhexan-4-ol (5) In the neutral or faintly alkaline medium, KMnO ₄ oxidises iodide into iodate. The change in oxidation state of manganese in this reaction is from yard to the faintly alkaline medium, KMnO ₄ oxidises iodide into iodate. The change in oxidation state of manganese in this reaction is from yard to the faintly alkaline medium, KMnO ₄ oxidises iodide into iodate. The change in oxidation state of manganese in this reaction is from yard to the faintly alkaline medium, KMnO ₄ oxidises iodide into iodate. The change in oxidation state of manganese in this reaction is from yard to the faintly alkaline medium, KMnO ₄ oxidises iodide into iodate. The change in oxidation state of manganese in this reaction is from yard to the faintly alkaline medium, KMnO ₄ oxidises iodide into iodate. The change in oxidation state of manganese in this reaction is from yard to the faintly alkaline medium, KMnO ₄ oxidises iodide into iodate. The change in oxidation state of manganese in this reaction is from yard to the faintly alkaline medium, KMnO ₄ oxidises iodide into iodate. The change in oxidation state of manganese in this reaction is from yard to the faintly alkaline medium, KMnO ₄ oxidises iodide into iodate. The change in oxidation state of manganese in this reaction of oxidises iodide into iodate.	(iii) H ₂ O (iii) H ₂ O (I) (I) (I) (I) (I) (I) (I) (I
92. The correct IUPAC name of the following compound is: (1) 1-bromo-4-methyl-5-chlorohexan-3-ol (2) 6-bromo-4-methyl-2-chlorohexan-4-ol (3) 1-bromo-5-chloro-4-methylhexan-3-ol (4) 6-bromo-2-chloro-4-methylhexan-4-ol (5) In the neutral or faintly alkaline medium, KMnO ₄ oxidises iodide into iodate. The change in oxidation state of manganese in this reaction is from yard to the faintly alkaline medium, KMnO ₄ oxidises iodide into iodate. The change in oxidation state of manganese in this reaction is from yard to the faintly alkaline medium, KMnO ₄ oxidises iodide into iodate. The change in oxidation state of manganese in this reaction is from yard to the faintly alkaline medium, KMnO ₄ oxidises iodide into iodate. The change in oxidation state of manganese in this reaction is from yard to the faintly alkaline medium, KMnO ₄ oxidises iodide into iodate. The change in oxidation state of manganese in this reaction is from yard to the faintly alkaline medium, KMnO ₄ oxidises iodide into iodate. The change in oxidation state of manganese in this reaction is from yard to the faintly alkaline medium, KMnO ₄ oxidises iodide into iodate. The change in oxidation state of manganese in this reaction is from yard to the faintly alkaline medium, KMnO ₄ oxidises iodide into iodate. The change in oxidation state of manganese in this reaction is from yard to the faintly alkaline medium, KMnO ₄ oxidises iodide into iodate. The change in oxidation state of manganese in this reaction of oxidises iodide into iodate.	(1) (1) (1) (2) (3) (4) (4) (5) (6) (7) (7) (8) (9) (9) (9) (1) (1) (1) (2) (2) (3) (4) (4) (5) (6) (7) (7) (7) (8) (9) (9) (9) (1) (1) (1) (2) (1) (1) (1) (1
92. The correct IUPAC name of the following compound is: (1) 1-bromo-4-methyl-5-chlorohexan-3-ol (2) 6-bromo-4-methyl-2-chlorohexan-4-ol (3) 1-bromo-5-chloro-4-methylhexan-3-ol (4) 6-bromo-2-chloro-4-methylhexan-4-ol In the neutral or faintly alkaline medium, KMnO ₄ oxidises iodide into iodate. The change in oxidation state of manganese in this reaction is from (4) +7 to +3 (2) +6 to +5 (3) +7 to +4 (4) +6 to +4 94. 3O ₂ (g) = 2O ₃ (g) for the above reaction at 298 K, K _c is found to be 3.0×10 ⁻⁵⁹ . If the concentration of O ₂ at equilibrium is 0.040 M then concentration of O ₃ in M is is 0.040 M then concentration of O ₃ in M is	(1) (1) (1) (2) (3) (4) (4) (5) (6) (7) (7) (8) (9) (9) (9) (1) (1) (1) (1) (2) (1) (2) (1) (1
92. The correct IUPAC name of the following compound is: (1) 1-bromo-4-methyl-5-chlorohexan-3-ol (2) 6-bromo-4-methyl-2-chlorohexan-4-ol (3) 1-bromo-5-chloro-4-methylhexan-3-ol (4) 6-bromo-2-chloro-4-methylhexan-4-ol In the neutral or faintly alkaline medium, KMnO ₄ oxidises iodide into iodate. The change in oxidation state of manganese in this reaction is from (4) +7 to +3 (2) +6 to +5 (3) +7 to +4 (4) +6 to +4 94. 3O ₂ (g) = 2O ₃ (g) for the above reaction at 298 K, K _c is found to be 3.0×10-59. If the concentration of O ₂ at equilibrium is 0.040 M then concentration of O ₃ in M is (1) 2.4×10 ³¹ (2) +3 10 10 10 10 10 10 10 10 10 10 10 10 10	(1) (1) (1) (2) (3) (4) (4) (5) (6) (7) (7) (8) (9) (9) (9) (1) (1) (1) (2) (1) (2) (3) (4) (4) (5) (6) (7) (7) (8) (9) (9) (9) (9) (1) (1) (1) (2) (1) (1) (1) (1
92. The correct IUPAC name of the following compound is: (1) 1-bromo-4-methyl-5-chlorohexan-3-ol (2) 6-bromo-4-methyl-2-chlorohexan-4-ol (3) 1-bromo-5-chloro-4-methylhexan-3-ol (4) 6-bromo-2-chloro-4-methylhexan-4-ol In the neutral or faintly alkaline medium, KMnO ₄ oxidises iodide into iodate. The change in oxidation state of manganese in this reaction is from (4) +7 to +3 (2) +6 to +5 (3) +7 to +4 (4) +6 to +4 94. 3O ₂ (g) = 2O ₃ (g) for the above reaction at 298 K, K _c is found to be 3.0×10-59. If the concentration of O ₂ at equilibrium is 0.040 M then concentration of O ₃ in M is (1) 2.4×10 ³¹ (2) +3 10 10 10 10 10 10 10 10 10 10 10 10 10	(1) (1) (1) (2) (3) (4) (4) (5) (6) (7) (7) (8) (9) (9) (9) (1) (1) (1) (1) (2) (1) (2) (1) (1
92. The correct IUPAC name of the following compound is: (1) 1-bromo-4-methyl-5-chlorohexan-3-ol (2) 6-bromo-4-methyl-2-chlorohexan-4-ol (3) 1-bromo-5-chloro-4-methylhexan-3-ol (4) 6-bromo-2-chloro-4-methylhexan-4-ol In the neutral or faintly alkaline medium, KMnO ₄ oxidises iodide into iodate. The change in oxidation state of manganese in this reaction is from (4) +7 to +3 (2) +6 to +5 (3) +7 to +4 (4) +6 to +4 94. 3O ₂ (g) = 2O ₃ (g) for the above reaction at 298 K, K _c is found to be 3.0×10-59. If the concentration of O ₂ at equilibrium is 0.040 M then concentration of O ₃ in M is (1) 2.4×10 ³¹ (2) +3 10 10 10 10 10 10 10 10 10 10 10 10 10	(iii) H ₂ O (iii)
92. The correct IUPAC name of the following compound is: (1) 1-bromo-4-methyl-5-chlorohexan-3-ol (2) 6-bromo-4-methyl-2-chlorohexan-4-ol (3) 1-bromo-5-chloro-4-methylhexan-3-ol (4) 6-bromo-2-chloro-4-methylhexan-4-ol In the neutral or faintly alkaline medium, KMnO ₄ oxidises iodide into iodate. The change in oxidation state of manganese in this reaction is from (4) +7 to +3 (2) +6 to +5 (3) +7 to +4 (4) +6 to +4 94. 3O ₂ (g) = 2O ₃ (g) for the above reaction at 298 K, K _c is found to be 3.0×10-59. If the concentration of O ₂ at equilibrium is 0.040 M then concentration of O ₃ in M is (1) 2.4×10 ³¹ (2) +3 10 10 10 10 10 10 10 10 10 10 10 10 10	(iii) H ₂ O (iii)
92. The correct IUPAC name of the following compound is: OH (1) 1-bromo-4-methyl-5-chlorohexan-3-ol (2) 6-bromo-4-methyl-2-chlorohexan-4-ol (3) 1-bromo-5-chloro-4-methylhexan-3-ol (4) 6-bromo-2-chloro-4-methylhexan-4-ol In the neutral or faintly alkaline medium, KMnO ₄ oxidises iodide into iodate. The change in oxidation state of manganese in this reaction is from (4) +7 to +3 (2) +6 to +5 (3) +7 to +4 (4) +6 to +4 94. 3O ₂ (g) = 2O ₃ (g) for the above reaction at 298 K, K _c is found to be 3.0×10 ⁻⁵⁹ . If the concentration of O ₂ at equilibrium is 0.040 M then concentration of O ₃ in M is (1) 2.4×10 ³¹ (2) 1.2×10 ²¹ (3) 438×10 ⁻³² (4) 438×10 ⁻³²	(iii) H ₂ O (iii)

Given below are two statements:

The primary CO2 acceptor in C4 plants is phosphoenolpyruvate and is found in the mesophyll cells.

Mesophyll cells of C₄ plants lack RuBisCo enzyme. In the light of the above statements, choose the correct answer from the options given below:

- Statement I is correct but Statement II is incorrect
- Statement I is incorrect but Statement II is
- Both Statement I and Statement II are correct
- Both Statement I and Statement II are (3) (4) incorrect
- Habitat loss and fragmentation, over exploitation, alien species invasion and co-extinction are causes
 - Biodiversity loss
 - Natality
 - Population explosion (3)
 - Competition
- 110. Production of Cucumber has increased manifold in recent years. Application of which of the following phytohormones has resulted in this increased yield as the hormone is known to produce female flowers in the plants:
 - Ethylene **(1)**
 - Cytokinin ** (2)
 - ABA (3)
 - Gibberellin (4)
- 111. The appearance of recombination nodules on homologous chromosomes during meiosis characterizes:
 - Sites at which crossing over occurs
 - (1) Terminalization M (2)
 - Synaptonemal complex (3)
 - Bivalent (4)
- 112. Which of the following is not a method of ex situ conservation?
 - Micropropagation (1)
 - Cryopreservation , (2)
 - In vitro fertilization V (3)
 - National Parks

- **(113** Which one of the following produces nitrogen fixing nodules on the roots of Alnus?
 - (1)Rhodospirillum >
 - (2)Beijernickia y
 - Rhizobium
 - (4) Frankia
- Which one of the following statements cannot be connected to Predation?
 - Both the interacting species are negatively impacted V
 - It is necessitated by nature to maintain the (2)ecological balance
 - It helps in maintaining species diversity in a (3)community /
 - It might lead to extinction of a species
- The device which can remove particulate matter present in the exhaust from a thermal power plant is:
 - Electrostatic Precipitator (1)
 - Catalytic Convertor (2)
 - STP (3)
 - Incinerator (4)
- Identify the incorrect statement related to Pollination:
 - Flowers produce foul odours to attract flies and beetles to get pollinated V
 - Moths and butterflies are the most dominant pollinating agents among insects
 - Pollination by water is quite rare in flowering
 - Pollination by wind is more common amongst (4) abiotic pollination
- Which one of the following plants does not show: 117. plasticity?
 - Buttercup V
 - Maize (2).
 - Cotton U(3)
 - Coriander / (4)
- What amount of energy is released from glucose during lactic acid fermentation?
 - About 10%
 - 42) Less than 7%
 - Approximately 15% (3)
 - More than 18% (4)

- 119. "Girdling Experiment" was performed by Plant Physiologists to identify the plant tissue through which:
 - (1) for both water and food transportation
 - (2) osmosis is observed
 - (3) water is transported
 - (4) food is transported
- 120. Which one of the following plants shows vexillary aestivation and diadelphous stamens?
 - (1) Allium cepa sousiad language
 - (2) Solanum nigrum
 - (3) Colchicum autumnale
 - (4) Pisum sativum
- 121. Read the following statements about the vascular bundles.
 - (a) In roots, xylem and phloem in a vascular bundle are arranged in an alternate manner along the different radii.
 - (b) Conjoint closed vascular bundles do not possess cambium
 - (c) In open vascular bundles, cambium is present in between xylem and phloem
 - (d) The vascular bundles of dicotyledonous stem possess endarch protoxylem
 - (e) In monocotyledonous root, usually there are more than six xylem bundles present

Choose the correct answer from the options given below:

- (1) (a), (b), (c) and (d) Only
- (2) (a), (c), (d) and (e) Only
 - (3) (a), (b) and (d) Only
 - (4) (b), (c), (d) and (e) Only 7/
- 122. Which one of the following never occurs during mitotic cell division?
 - (1) Pairing of homologous chromosomes
 - Coiling and condensation of the chromatids
 - (3) Spindle fibres attach to kinetochores of chromosomes
 - (4) Movement of centrioles towards opposite poles

123. Given below are two statements:

Statement I:

Cleistogamous flowers are invariably autogamous Statement II:

Cleistogamy is disadvantageous as there is no chance for cross pollination

In the light of the above statements, choose the correct answer from the options given below:

- (1) Statement I is correct but Statement II is incorrect
- (2) Statement I is incorrect but Statement II is correct
- Both Statement I and Statement II are correct
- (4) Both Statement I and Statement II are incorrect
- 124. Identify the correct set of statements:
 - (a) The leaflets are modified into pointed hard thorns in Citrus and Bougainvillea.
- (b) Axillary buds form slender and spirally coiled tendrils in cucumber and pumpkin
 - (c) Stem is flattened and fleshy in *Opuntia* and modified to perform the function of leaves
 - (d) Rhizophora shows vertically upward growing roots that help to get oxygen for respiration
 - (e) Subaerially growing stems in grasses and strawberry help in vegetative propagation

Choose the correct answer from the options given below:

- (b), (c), (d) and (e) Only 🗸
- (2) (a), (b), (d) and (e) Only
- (3) (b) and (c) Only
- (4) (a) and (d) Only
- 125. XO type of sex determination can be found in:
 - (1) Grasshoppers
 - (2) Monkeys
 - (3) Drosophila
 - (4) Birds
- 126. Hydrocolloid carrageen is obtained from:
 - (1) Rhodophyceae only
 - (2) Phaeophyceae only
 - (3) Chlorophyceae and Phaeophyceae
 - (4) Phaeophyceae and Rhodophyceae
- 127. Which of the following is not observed during apoplastic pathway?
 - (1) The movement is aided by cytoplasmic streaming
 - (2) Apoplast is continuous and does not provide any barrier to water movement. ✓
 - (3) Movement of water occurs through intercellular spaces and wall of the cells/
 - The movement does not involve crossing of cell membrane

Given below are two statements: one is labelled as Assertion (A) and the other is labelled as Reason (R).

Assertion (A):

Polymerase chain reaction is used in DNA amplification

Reason (R):

The ampicillin resistant gene is used as a selectable marker to check transformation

In the light of the above statements, choose the correct answer from the options given below:

- (A) is correct but (R) is not correct (1)
- (A) is not correct but (R) is correct (2)
- Both (A) and (R) are correct and (R) is the correct explanation of (A)
- Both (A) and (R) are correct but (R) is not the correct explanation of (A)
- Which one of the following is not true regarding the release of energy during ATP synthesis through 129. chemiosmosis? It involves:
 - Movement of protons across the membrane to the stroma
 - Reduction of NADP to NADPH2 on the stroma side of the membrane
 - Breakdown of proton gradient (3)
 - Breakdown of electron gradient

The flowers are Zygomorphic in: Mustard Gulmohar Cassia Datur (d)

Choose the correct answer from the options given below:

- (d), (e) Only (1)
- (c), (d), (e) Only (2)
- (a), (b), (c) Only (3)
- (b), (c) Only

Given below are two statements: 131.

Statement I: Mendel studied seven pairs of contrasting traits in pea plants and proposed the Laws of Inheritance

Seven characters examined by Mendel in his experiment on pea plants were seed shape and colour, flower colour, pod shape and colour, flower position and stem height

In the light of the above statements, choose the correct answer from the options given below:

- Statement I is correct but Statement II is (1) incorrect
- Statement I is incorrect but Statement II is correct and seement in
- Both Statement I and Statement II are correct
- Both Statement I and Statement II are incorrect
- What is the net gain of ATP when each molecule of glucose is converted to two molecules of pyruvic 132 SCOK options grown below acid?

 - Eight (2)

(1)

- Four (3)
- (4)
- Given below are two statements: 133.

Statement I:

Decomposition is a process in which the detritus is degraded into simpler substances by microbes.

Statement II:

Decomposition is faster if the detritus is rich in lignin and chitin

In the light of the above statements, choose the correct answer from the options given below:

- Statement I is correct but Statement II is incorrect
- Statement I is incorrect but Statement II is (2)correct
- Both Statement I and Statement II are correct 13Y
- Both Statement I and Statement II are incorrect
- The process of translation of mRNA to proteins 134. begins as soon as:
 - Both the subunits join together to bind with (1) mRNA
 - The tRNA is activated and the larger subunit (2)of ribosome encounters mRNA
 - The small subunit of ribosome encounters (3)mRNA
 - The larger subunit of ribosome encounters (4)

S3

135. Which of the following is incorrectly matched?

(1) Porphyra - Floridian Starch

(2) Volvox - Starch

(3) Ectocarpus - Fucoxanthin

(4) Wotherix - Mannitol

Section - B (Biology : Botany)

136. Given below are two statements: one is labelled as Assertion (A) and the other is labelled as Reason (R).

Assertion (A):

Mendel's law of Independent assortment does not hold good for the genes that are located closely on the same chromosome.

Reason (R):

Closely located genes assort independently.

In the light of the above statements, choose the correct answer from the options given below:

- (1) (A) is correct but (R) is not correct
- (2) (A) is not correct but (R) is correct
- (3) Both (A) and (R) are correct and (R) is the correct explanation of (A)
- (4) Both (A) and (R) are correct but (R) is not the correct explanation of (A)

137. Which part of the fruit, labelled in the given figure makes it a false fruit?

(X) C → Thalamus

- (2) $D \rightarrow Seed$
- (3) $A \rightarrow Mesocarp$
- (4) $B \rightarrow Endocarp$

Which one of the following will accelerate phosphorus cycle?

- (1) Weathering of rocks
- (2) Rain fall and storms
- (3) Burning of fossil fuels
- (4) Volcanic activity

9. The entire fleet of buses in Delhi were converted to CNG from diesel. In reference to this, which one of the following statements is false?

- It is cheaper than diesel ~
- (2) It can not be adulterated like diesel
- (3) CNG burns more efficiently than diesel ~
- (4) The same diesel engine is used in CNG buses making the cost of conversion low

What is the role of large bundle shealth cells found around the vascular bundles in C₄ plants

- To enable the plant to tolerate high temperature
- To protect the vascular tissue from high light intensity
- (3) To provide the site for photorespiratory pathway
- (4) To increase the number of chloroplast for the operation of Calvin cycle

141. Transposons can be used during which one of the following?

- Autoradiography
- (2) Gene sequencing
- (3) Polymerase Chain Reaction
- (4) Gene silencing

142. Which of the following occurs due to the presence of autosome linked dominant trait?

- (1) Haemophilia
- (2) Thalessemia
- (3) Sickle cell anaemia
- (4) Myotonic dystrophy

143. Match List - I with List - II.

List-I

List-II

- (a) Metacentric chromosome
 - (i) Centromere situated close to the end forming one extremely short and one very long arms
- (b) Acrocentric chromosome
- (ii) Centromere at the terminal end (iii) Centromere in the middle
- (c) Submetacentric

Telocentric /

chromosome

forming two equal arms of chromosomes

(iv) Centromere slightly away from the middle forming one shorter arm and one

longer arm
Choose the correct answer from the options given below:

(1) (a) - (ii), (b) - (iii), (c) - (iv), (d) - (i)

- (2) (a) (i), (b) (ii), (c) (iii), (d) (iv)
- (3) (a) (iii), (b) (i), (c) (iv), (d) (ii) (4) (a) - (i), (b) - (iii), (c) - (ii), (d) - (iv)

- Read the following statements on lipids and find 147. out correct set of statements:
 - (a) Lecithin found in the plasma membrane is a glycolipid
 - Saturated fatty acids possess one or more (b) c = c bonds
 - Gingely oil has lower melting point, hence (c) remains as oil in winter
 - Lipids are generally insoluble in water but (d) soluble in some organic solvents
 - When fatty acid is esterified with glycerol, (e) monoglycerides are formed

Choose the correct answer from the options given below:

- (c), (d) and (e) only (1)
- (a), (b) and (d) only (2)
- (a), (b) and (c) only (3)
- (a), (d) and (e) only (4)

Addition of more solutes in a given solution will:

- make its water potential zero 🔀 (1)
- not affect the water potential at all (2)
- raise its water potential (3)
- lower its water potential /

- List-I Dominant diploid sporophyte Spirogyra vascular plant, with highly reduced male or female gametophyte
- Dominant haploid free-living Fern gametophyte
- (iii) Dominant diploid sporophyte alternating with reduced Funaria (c) gametophyte called prothallus
- (iv) Dominant haploid leafy gametophyte alternating with Cycas (d) dependent partially multicellular sporophyte

Choose the correct answer from the options given

below:

- (a) (iii), (b) (iv), (c) (i), (d) (ii)
- (a) (ii), (b) (iv), (c) (i), (d) (iii) (1)
- (a) (iv), (b) (i), (c) (ii), (d) (iii) (2)(3)
- (a) (ii), (b) (iii), (c) (iv), (d) (i) (4)

While explaining interspecific interaction of population, (+) sign is assigned for beneficial interaction, (-) sign is assigned for detrimental interaction and (0) for neutral interaction. Which of the following interactions can be assigned (+) for one species and (-) for another species involved in the interaction?

- Commensalism (1)
- Competition
- Predation +
- Amensalism (4)

In the following palindromic base sequences of DNA, which one can be cut easily by particular restriction enzyme?

- 5'CTCAGT3'; 3'GAGTCA5' (1)
- 5'GTATTC3'; 3'CATAAG5' (2)
- 5'GATACT3'; 3'CTATGA5' (3)
- 5'GAATTC3'; 3'CTTAAG5' (A)

If a geneticist uses the blind approach for sequencing the whole genome of an organism, followed by 149. assignment of function to different segments, the methodology adopted by him is called as:

- Expressed sequence tags (1)
- **Bioinformatics** (2)
- Sequence annotation U (3)
- Gene mapping (4)

The anatomy of springwood shows some peculiar 150. features. Identify the correct set of statements about springwood.

- It is also called as the earlywood (a)
- In spring season cambium produces xylem (b) elements with narrow vessels
- It is lighter in colour (c)
- The springwood along with autumnwood (d) shows alternate concentric rings forming annual rings
- It has lower density

Choose the correct answer from the options given below:

- (a), (b) and (d) Only
- (c), (d) and (e) Only (2)
- (3)(a), (b), (d) and (e) Only
- (a), (c), (d) and (e) Only

Section - A (Biology : Zoology)

- 151. Which of the following statements are true for spermatogenesis but do not hold true for Oogenesis?
 - (a) It results in the formation of haploid gametes
 - (b) Differentiation of gamete occurs after the completion of meiosis
 - (c) Meiosis occurs continuously in a <u>mitoti</u>cally dividing stem cell population
 - (d) It is controlled by the Luteinising hormone (LH) and Follicle Stimulating Hormone (FSH) secreted by the anterior pituitary
 - (e) It is initiated at puberty 🗸

Choose the most appropriate answer from the options given below:

- (1) (b), (d) and (e) only
- (b), (c) and (e) only
- (3) (c) and (e) only
- (4) (b) and (c) only

2. Given below are two statements:

Statement I:

Fatty acids and glycerols cannot be absorbed into the blood.

Statement II:

Specialized lymphatic capillaries called lacteals carry chylomicrons into lymphatic vessels and ultimately into the blood.

In the light of the above statements, choose the most appropriate answer from the options given below:

- (1) Statement I is correct but Statement II is incorrect
- (2) Statement I is incorrect but Statement II is correct
 - Both Statement I and Statement II are correct
- (4) Both Statement I and Statement II are incorrect
- 153. Breeding crops with higher levels of vitamins and minerals or higher proteins and healthier fats is called:
 - (1) Bio-fortification
 - (2) Bio-accumulation
 - (3) Bio-magnification
 - (4) Bio-remediation
- 154. In an E.coli strain i gene gets mutated and its product can not bind the inducer molecule. If growth medium is provided with lactose, what will be the outcome?
 - (1) z, y, a genes will not be translated
 - (2) RNA polymerase will bind the promoter region
 - (3) Only z gene will get transcribed
 - (4) z, y, a genes will be transcribed

- 155. Which of the following is present between the adjacent bones of the vertebral column?
 - (1) Areolar tissue
 - (2) Smooth muscle
 - (3) Intercalated discs

(4) Cartilage

156. Given below are two statements:

Statement I:

Autoimmune disorder is a condition where body defense mechanism recognizes its own cells as foreign bodies.

Statement II:

Rheumatoid arthritis is a condition where body does not attack self cells.

In the light of the above statements, choose the most appropriate answer from the options given below:

- Statement I is correct but Statement II is incorrect
 - (2) Statement I is incorrect but Statement II is correct
 - (3) Both Statement I and Statement II are correct
 - (4) Both Statement I and Statement II are incorrect
- At which stage of life the oogenesis process is initiated?
 - u(1) Birth
 - (2) Adult
 - (3) Puberty
 - Embryonic development stage
- 158. Select the incorrect statement with reference to mitosis:
 - Chromosomes decondense at telophase.
 - (2) Splitting of centromere occurs at anaphase
 - (3) All the chromosomes lie at the equator at metaphase.
 - (4) Spindle fibres attach to centromere of chromosomes.
- 159. In-situ conservation refers to:
 - (1) · Conserve only endangered species
 - (2) Conserve only extinct species
 - (3) Protect and conserve the whole ecosystem
 - (4) Conserve only high risk species
- Which of the following functions is not performed by secretions from salivary glands?
 - (1) Lubrication of oral cavity
 - (2) Digestion of disaccharides
 - (3) Control bacterial population in mouth 1/
 - (4) Digestion of complex carbohydrates

160. Given below are two statements: one is labelled as Assertion (A) and the other is labelled as Reason (R).

Assertion (A):

Osteoporosis is characterised by decreased bone mass and increased chances of fractures.

Reason (R):

Common cause of osteoporosis is increased levels of estrogen.

In the light of the above statements, choose the most appropriate answer from the options given below:

- (A) is correct but (R) is not correct (1)
- (A) is not correct but (R) is correct (2)
- Both (A) and (R) are correct and (R) is the (3) correct explanation of (A)
 - Both (A) and (R) are correct but (R) is not the (4) correct explanation of (A)

Given below are two statements: 162.

Statement I:

The coagulum is formed of network of threads called thrombins.

Statement II:

Spleen is the graveyard of erythrocytes.

In the light of the above statements, choose the most appropriate answer from the options given below:

- Statement I is correct but Statement II is incorrect
- Statement I is incorrect but Statement II is (2)
- Both Statement I and Statement II are correct
- Both Statement I and Statement II are (4) incorrect il al mi

Given below are two statements: 163.

Mycoplasma can pass through less than 1 micron filter size.

Mycoplasma are bacteria with cell wall \rtimes

In the light of the above statements, choose the most appropriate answer from the options given below:

- Statement I is correct but Statement II is
 - Statement I is incorrect but Statement II is (2)
 - Both Statement I and Statement II are correct Both Statement I and Statement II are incorrect

164. Tegmina in cockroach, arises from:

Metathorax V an

- Prothorax and Mesothorax
- Prothorax v
- Mesothorax (4)
- Given below are two statements: one is labelled as 165. Assertion (A) and the other is labelled as Reason that impossibly paid one make the male

Assertion (A):

All vertebrates are chordates but all chordates are not vertebrates.

Reason (R):

Notochord is replaced by vertebral column in the adult vertebrates.

In the light of the above statements, choose the most appropriate answer from the options given below:

- (1) (A) is correct but (R) is not correct
 - (A) is not correct but (R) is correct
 - (R) are correct and (R) is the correct explanation of (A)
- Both (A) and (R) are correct but (R) is not the correct explanation of (A)
- Nitrogenous waste is excreted in the form of pellet or paste by:
 - Hippocampus (1)
 - (2)
 - Ornithorhynchus (3)
 - Salamandra
- A dehydration reaction links two glucose molecules to produce maltose. If the formula for glucose is $C_6H_{12}O_6$ then what is the formula for maltose?
 - (1) C12H22O11
- $C_{12}H_{20}O_{10}$

C12H24O11

- C₁₂H₂₄O₁₂
- 168. Regarding Meiosis, which of the statements is incorrect?
 - Pairing of homologous chromosomes and **Y**(1) recombination occurs in Meiosis-I
 - Four haploid cells are formed at the end of (2)Meiosis-II
 - There are two stages in Meiosis, Meiosis-I (3)and II
 - DNA replication occurs in S phase of (4) Meiosis-II

S3	1.1	Managh at Market a second
169.		der normal physiological conditions in human ng every 100 ml of oxygenated blood can deliver ml of O ₂ to the tissues.
	(1)	4 ml
	(2)	10 ml
	(3)	2 ml
eg b	Lar	5 ml - construct our transpolition with the season of the delay materials. And
170.	Give	n below are two statements:
		ement I:
S41.3	The is cal	release of sperms into the seminiferous tubules
		ement II:
	from	miogenesis is the process of formation of sperms spermatogonia.
inari Lurol	In th	e light of the above statements, choose the most ropriate answer from the options given below :
	(1)	Statement I is correct but Statement II is incorrect
e/H :	L(2)	Statement I is incorrect but Statement II is correct
-67	(3)	Both Statement I and Statement II are correct
	(4)	Both Statement I and Statement II are incorrect
171.	arra	he taxonomic categories which hierarchial ngement in ascending order is correct in case of the sale?
	(1)	Kingdom, Order, Class, Phylum, Family, Genus, Species
45	(2)	Kingdom, Order, Phylum, Class, Family, Genus, Species
	13)	Kingdom, Phylum, Class, Order, Family, Genus, Species
	(4)	Kingdom, Class, Phylum, Family, Order, Genus, Species
172.	the p	roduction of an immunosuppressive molecule osporin A:
2 31	(1)	Aspergillus niger
ton.	(2)	Streptococcus cerevisiae
Byre.	(3)	Trichoderma polysporum
	(4)	Clostridium butylicum X W
173.	Linn	e's loop is a type of contraceptive used as:
270.	_	Non-Medicated IUD
L Ship	(2)	Copper releasing IUD

(3)

(4)

Cervical barrier

Vault barrier

Atten	wil	l be the approximate number of base pairs?
17	(1)	3.3×10^6 bp
	(2)	$6.6 \times 10^6 \text{ bp}$
	(3)	3,3×109 bp 2.2 6
	(4)	$6.6 \times 10^{6} \text{ bp}$ $3.3 \times 10^{9} \text{ bp}$ $6.6 \times 10^{9} \text{ bp}$ $7.1 = 6.6 \times 10^{9} \text{ bp}$
84922	1,000	
175.	Det	ritivores breakdown detritus into smaller ticles. This process is called:
	_	The second secon
15804	(1)	Humification
- Arie	(2)	Decomposition
	(3)	Catabolism (1)
	(4)	Fragmentation
176.	Whi	ich of the following is not a connective tissue?
cultin.	(1)	Cartilage /
738.230	(2)	Neuroglia
	(3)	Blood /
13	(4)	Adipose tissue
	(3)	The Towns on the State of the Committee
177.	Whi	ch of the following is a correct match for disease
	and	its symptoms?
	(1)	Myasthenia gravis - Genetic disorder resulting in weakening and paralysis of
	with the	skeletal muscle
1 01	(2)	An auto immune
. 260	(2)	disorder causing progressive degeneration of
21.11	Fanta	skeletal muscle
	(8)	Arthritis - Inflammed joints
理師	(4)	Tetany - high Ca ²⁺ level causing rapid
and the same		spasms. Top
1550	XATL :	the following statements with respect to
170.	Endo	plasmic Reticinum is medicer.
	ar	In prokaryotes only RER are present
	~	SER are the sites for lipid synthesis
	(2)	RER has ribosomes attached to ER
are to a	(3)	SER is devoid of ribosomes
	7	
179.	In ge	ne therapy of Adenosine Deaminase (ADA)
F351771	gene	tically engineered lymphocytes because:
	(1)	Lymphocytes from patient's blood are grown in culture, outside the body.
11	(0)	Genetically engineered lymphocytes are not
V	(2)	immortal cells. we
ai (II)	(3)	Retroviral vector is introduced into these
	(0)	lymphocytes.
_stor.	(4)	Gene isolated from marrow cells producing
116 1	Tean	ADA is introduced into cells at embryonic
		stages .
		The second secon

174. If the length of a DNA molecule is 1.1 metres, what

- 180. Natural selection where more individuals acquire specific character value other than the mean character value, leads to:
 - (acre (1) Disruptive change shafe lead to be a lead of the lead of
 - (2) Random change
 - (3) Stabilising change
 - (4) Directional change
- 181. Given below are two statements:

Statement I:

Restriction endonucleases recognise specific sequence to cut DNA known as palindromic nucleotide sequence.

e portug

Statement II:

Restriction endonucleases cut the DNA strand a little away from the centre of the palindromic site.

In the light of the above statements, choose the most appropriate answer from the options given below:

- (1) Statement I is correct but Statement II is incorrect
- (2) Statement I is incorrect but Statement II is correct
- Both Statement I and Statement II are correct
- (4) Both Statement I and Statement II are incorrect
- 182. If '8' Drosophila in a laboratory population of '80' died during a week, the death rate in the population is _____ individuals per Drosophila per week.
 - (1) 1.0
- 8019
- (2) zero
- (3) 0.1
- (4) 10
- 183. In which of the following animals, digestive tract has additional chambers like crop and gizzard?
 - (1) Catla, Columba, Crocodilus >

12) w Pavo, Psittacula, Corvus Corr

- (3) Corous, Columba, Chameleon
- (4) Bufo, Balaenoptera, Bangarus
- 184. Identify the asexual reproductive structure associated with Penicillium:
 - (1) Gemmules 4
 - (2) Buds Dvs
 - (3) Zoospores
 - (4) Conidia

- 185. Which of the following is not the function of conducting part of respiratory system?
 - (1) Temperature of inhaled air is brought to body temperature
 - Provides surface for diffusion of O2 and CO2
 - (3) It clears inhaled air from foreign particles
- (4) Inhaled air is humidified

Section - B (Biology : Zoology)

- 186. Which of the following statements is not true?
 - (1) Homology indicates common ancestry ~
 - Flippers of penguins and dolphins are a pair of homologous organs
 - (3) Analogous structures are a result of convergent evolution \checkmark
 - (4) Sweet potato and potato is an example of analogy
- Which of the following are not the effects of Parathyroid hormone?
 - (a) Stimulates the process of bone resorption
 - (b) Decreases Ca2+ level in blood
 - (c) Reabsorption of Ca²⁺ by renal tubules
 - (d) Decreases the absorption of Ca²⁺ from digested food
 - (e) Increases metabolism of carbohydrates

Choose the most appropriate answer from the options given below:

- (1) (a) and (e) only
- (2) (b) and (c) only
- (3) (a) and (c) only
- (4) (b), (d) and (e) only
- 188. Select the incorrect statement regarding synapses:
 - Chemical synapses use neurotransmitters
 - (2) Impulse transmission across a chemical synapse is always faster than that across an electrical synapse.
 - (3) The membranes of presynaptic and postsynaptic neurons are in close proximity in an electrical synapse.
 - (4) Electrical current can flow directly from one neuron into the other across the electrical synapse.

192. Match List - I with List - II.

53 189. Match List - I with List - II with respect to methods of Contraception and their respective actions. List - I List-II (a) Diaphragms (i) Inhibit ovulation and Implantation (b) Contraceptive (ii) Increase phagocytosis of Pills sperm within Uterus Intra Uterine (iii) Absence of Menstrual cycle and ovulation following Devices parturition (d) Lactational They cover the cervix Amenorrhea blocking the entry of sperms Choose the correct answer from the options given below: (1) (a) - (ii), (b) - (iv), (c) - (i), (d) - (iii) (2)(a) - (iii), (b) - (ii), (c) - (i), (d) - (iv) (3)(a) - (iv), (b) - (i), (c) - (iii), (d) - (ii) (a) - (iv), (b) - (i), (c) - (ii), (d) - (iii) Select the incorrect statement with respect to acquired immunity. Anamnestic response is due to memory of first (1)encounter. Acquired immunity is non-specific type of (2) defense present at the time of birth. Primary response is produced when our body (3)encounters a pathogen for the first time. Anamnestic response is elicited on (4)subsequent encounters with the same pathogen. Statements related to human Insulin are given below. Which statement(s) is/are correct about genetically engineered Insulin? Pro-hormone insulin contain extra stretch of (a) C-peptide uA-peptide and B-peptide chains of insulin

were produced separately in E.coli, extracted

and combined by creating disulphide bond

Insulin used for treating Diabetes was

Pro-hormone Insulin needs to be processed

for converting into a mature and functional

Some patients develop allergic reactions to

extracted from Cattles and Pigs. V

Choose the most appropriate answer from the

(b)

(c)

(d)

(e)

(1)

(2)

43)

between them.

the foreign insulin.

options given below:

(b) only

(c) and (d) only

(c), (d) and (e) only

(a), (b) and (d) only

List - I List-II (Biological Molecules) (Biological functions) (a) Glycogen Hormone Globulin (b) (ii) Biocatalyst Steroids (c) (iii) Antibody ' (d) Thrombin Storage product Choose the correct answer from the options given below: (1) (a) - (ii), (b) - (iv), (c) - (iii), (d) - (i) (a) - (iv), (b) - (iii), (c) - (i), (d) - (ii) (a) - (iii), (b) - (ii), (c) - (iv), (d) - (i) (a) - (iv), (b) - (ii), (c) - (i), (d) - (iii) (4) Which of the following is not a desirable feature of a 193. cloning vector? Presence of single restriction enzyme site > Presence of two or more recognition sites Presence of origin of replication (3)Presence of a marker gene (4) Ten E.coli cells with 15N - dsDNA are incubated in 194. medium containing 14N nucleotide After 60 minutes, how many E.coli cells will have DNA totally free from 15N? 60 cells (1)80 cells (2)20 cells (3)40 cells

Which one of the following statements is correct? 195.

- Blood moves freely from atrium to the ventricle (1) during joint diastole.
- Increased ventricular pressure causes closing (2) of the semilunar valves.
- The atrio-ventricular node (AVN) generates (3)an action potential to stimulate atrial contraction
- The tricuspid and the bicuspid valves open (4) due to the pressure exerted by the simultaneous contraction of the atria

- 196. The recombination frequency between the genes a & c is 5%, b & c is 15%, b & d is 9%, a & b is 20%, c & d is 24% and a & d is 29%. What will be the sequence of these genes on a linear chromosome?
 - (1) a, b, c, d
 - (2) a, c, b, d
 - (3) a, d, b, c
 - (4) d, b, a, c
- 197. Which of the following is a correct statement?
 - (1) Slime moulds are saprophytic organisms classified under Kingdom Monera.
 - (2) Mycoplasma have DNA, Ribosome and cell wall
 - (3) Cyanobacteria are a group of autotrophic organisms classified under Kingdom Monera.
 - (4) Bacteria are exclusively heterotrophic organisms.
- 98. Given below are two statements:

Statement I:

In a scrubber the exhaust from the thermal plant is passed through the electric wires to charge the dust particles.

Statement II:

Particulate matter (PM 2.5) can not be removed by scrubber but can be removed by an electrostatic precipitator.

In the light of the above statements, choose the most appropriate answer from the options given below:

- (1) Statement I is correct but Statement II is incorrect
- (2) Statement I is incorrect but Statement II is correct
- (3) Both Statement I and Statement II are correct
- Both Statement I and Statement II are incorrect

199. If a colour blind female marries a man whose mother was also colour blind, what are the chances of her progeny having colour blindness?

200. Match List - I with List - II.

List - I (a) Bronchioles (i) Dense Regular Connective Tissue (b) Goblet cell (ii) Loose Connective Tissue

- (c) Tendons / (iii) Glandular Tissue
 (d) Adipose Tissue (iv) Ciliated Epithelium
- Choose the correct answer from the options given below:

-000-