DO NOT OPEN THIS TEST BOOKLET UNTIL YOU ARE ASKED TO DO SO

COMBINED COMPETITIVE (PRELIMINARY) EXAMINATION, 2013

Serial No.	
------------	--

CIVIL ENGINEERING Code No. 05

Time Allowed: Two Hours

Maximum Marks: 300

INSTRUCTIONS

- 1. IMMEDIATELY AFTER THE COMMENCEMENT OF THE EXAMINATION, YOU SHOULD CHECK THAT THIS TEST BOOKLET DOES NOT HAVE ANY UNPRINTED OR TORN OR MISSING PAGES OR ITEMS, ETC. IF SO, GET IT REPLACED BY A COMPLETE TEST BOOKLET.
- 2. ENCODE CLEARLY THE TEST BOOKLET SERIES **A, B, C OR D** AS THE CASE MAY BE IN THE APPROPRIATE PLACE IN THE RESPONSE SHEET.
- 3. You have to enter your Roll Number on this
 Test Booklet in the Box provided alongside.

 DO NOT write anything else on the Test Booklet.

 Your Roll No.

 Your Roll No.
- 4. This Booklet contains 120 items (questions). Each item comprises *four* responses (answers). You will select *one* response which you want to mark on the Response Sheet. In case you feel that there is more than one correct response, mark the response which you consider the best. In any case, choose ONLY ONE response for each item.
- 5. In case you find any discrepancy in this test booklet in any question(s) or the Responses, a written representation explaining the details of such alleged discrepancy, be submitted within three days, indicating the Question No(s) and the Test Booklet Series, in which the discrepancy is alleged. Representation not received within time shall not be entertained at all.
- 6. You have to mark all your responses ONLY on the separate Response Sheet provided. *See directions in the Response Sheet*.
- 7. All items carry equal marks. Attempt ALL items. Your total marks will depend only on the number of correct responses marked by you in the Response Sheet.
- 8. Before you proceed to mark in the Response Sheet the response to various items in the Test Booklet, you have to fill in some particulars in the Response Sheet as per instructions sent to you with your Admit Card and Instructions.
- 9. While writing Centre, Subject and Roll No. on the top of the Response Sheet in appropriate boxes use "ONLY BALL POINT PEN".
- 10. After you have completed filling in all your responses on the Response Sheet and the examination has concluded, you should hand over to the Invigilator only the Response Sheet. You are permitted to take away with you the Test Booklet.

DO NOT OPEN THIS TEST BOOKLET UNTIL YOU ARE ASKED TO DO SO

ROUGH WORK

EIJ-49854-A

1.	The free-body diagram of a satellite rotating about the earth will show the satellite isolated from its
	surroundings and:
	(A) no force acting on it
	(B) its velocity shown on it
	(C) the force of gravity and centrifugal force acting on it
	(D) the force of gravity, centrifugal force and its velocity

2. The time taken by a small frictionless bead to slide on a thin wire in the gravitational field is the minimum if the shape of the wire is:

(B) A cycloid

(C) An involute

(D) A parabola

3. Stability of equilibrium of a body requires that:

(A)
$$\frac{d PE}{ds} = 0$$

(B)
$$\frac{d PE}{ds} = 0 \text{ and } \frac{d^2 PE}{ds^2} < 0$$

(C)
$$\frac{d PE}{ds} = 0$$
 and $\frac{d^2 PE}{ds^2} > 0$

(D) None of the above

4. A rigid body, in translation:

(A) Must undergo plane motion only

(B) Cannot move on a circular path

(C) May move along a straight or curved path

(D) Can only move in a straight line

5. The first moment of triangular area of base "b" and height "h" taken about an axis coincident with the base is given by:

(A)
$$bh^{3}/12$$

(B)
$$b^2h/6$$

(C)
$$bh^2/6$$

(D)
$$\frac{h}{3}$$

6. The second moment of a plane area about any axis as compared to its second moment about the neutral axis:

(A) is always more

(B) is always less

(C) is sometimes more

(D) is equal

7. The coefficient of restitution is defined on the basis of:

(A) Velocity components along the line of impact only

(B) Velocity component normal to the line of impact

(C) The velocity direction before and after the collision

(D) None of the above

- The acceleration of a particle is given by $a = t^3 3t^2 + 5$ m/s² where the time "t" is in seconds. 8. If the Velocity of the particle at t = 1 second is 6.25 m/s and displacement is 8.8m, the Velocity and displacement at t = 2 seconds is:
 - (A) 8 m/sec, 16.1m

(B) 8.5 m/sec, 16.5m

(C) 9 m/sec, 16.1m

(D) 16.4 m/sec, 8m

- The D'Alembert principle:
 - (A) is hypothetical principle
 - (B) provides no special advantage over Newton's Law
 - (C) is based upon the existence of inertia forces
 - (D) allows a dynamic problem to be treated as a statical problem
- 10. The Coriolis acceleration may not vanish:
 - (A) if the relative velocity of the moving point becomes zero
 - (B) if the rotational velocity of the moving frame becomes zero
 - (C) if the rotational velocity of the moving frame and relative velocity become collinear
 - (D) if the angular acceleration of the point becomes zero
- 11. The ratio of effective length of compression member of steel to the approximate radius of gyration shall not exceed:
 - (A) 400

(B) 350

(C) 300

(D) 250

d, supported W

(B) $\Delta \simeq 180 \frac{WL^2}{EI}$ WL⁴ 12. Beam fixed at one end, supported at the other with uniform load as shown, then max deflection is given by:

(A) $\Delta \simeq 185 \frac{WL^4}{EI}$

(C) $\Delta \simeq 185 \frac{WL^3}{EI}$

- (D) $\Delta \simeq 180 \frac{\text{WL}^4}{\text{EI}}$
- 13. Poisson's Ratio is a constant upto elastic limit. It is in the range of _____ for steel.
 - (A) $\frac{1}{4}$ to $\frac{1}{3}$

(B) $\frac{1}{5}$ to $\frac{1}{4}$

(C) $\frac{1}{5}$ to $\frac{1}{3}$

- (D) $\frac{1}{6}$ to $\frac{1}{5}$
- 14. A beam of square cross section (B×B) is used as a beam with one diagonal horizontal. The location of the maximum shear stress from the neutral axis will be at a distance of:
 - (A) Zero

(B) $\frac{B}{4}$

(C) $\frac{0.25B}{\sqrt{2}}$

(D) $\frac{B}{8}$

EIJ-49854-A

15.	The maximum stress produced in a bar of tapering (A) larger end (C) middle	(B)	on under direct tension is at : smaller end anywhere
16.	If a composite bar is cooled, then the nature of stre	, ,	•
	expansion will be: (A) Tensile	(D)	Zara
		` ′	Zero
	(C) Compressive	(D)	None of these
17.	When a cantilever is loaded at its free end by a down shall develop at:	wnw	ard load, maximum compressive stress
	(A) bottom fiber	(B)	top fiber
	(C) neutral axis		centre of gravity
18.	The stability of a dam is checked for:		
	(A) tension at the base	(B)	over turning of the dam
	(C) sliding of the dam		All of these
	()	` /	
19.	The effective thickness of a fillet weld is:		
	(A) $\frac{S}{2}$	(B)	S/ /1.66 S/ /1.25
	(C) $\frac{S}{1.428}$	(D)	S/1.25
	where S is size of weld.		/ 1.23
	where 5 is size of weig.		
20.	When a closely coiled spring is subjected to an axi	al loa	nd. it is said to be under:
	(A) Bending only		Shear only
	(C) Torsion and shear	. ,	None of these
	(0)	(-)	
21.	Polar moment of inertia of a solid shaft of diameter	" D " i	
	$(A) \frac{\pi D^3}{16}$	(D)	$\frac{\pi D^2}{16}$
	$(A) \frac{1}{16}$	(B)	16
	(C) $\frac{\pi D^2}{36}$	(D)	$\frac{\pi D^4}{32}$
	36	(2)	32
22.	When a solid shaft is subjected to torsion, the shear		
	(A) Zero	(B)	Minimum
	(C) Maximum	(D)	Average

- 23. Stiffness factor of a beam fixed at one end and simply supported at the other end for rotation at simply supported end is:
 - (A) $\frac{3EI}{L}$

(B) ${}^{4}EI/L$

(C) $\frac{6EI}{L}$

- (D) 8EI/L
- 24. Two simply supported beams of the same span carry the same total load. If the first beam carries the total load as a point load at its centre and the other uniformly distributed over the whole span, then the ratio of maximum slopes of first beam to the second will be:
 - (A) 1:1

(B) 1:1.5

(C) 1.5:1

- (D) 2:1
- 25. The end rotation for the given beam is:

(B) $0.25 \frac{ML}{EI}$

(C) $0.25 \frac{\text{ML}^3}{\text{FI}}$

- (D) $0.35 \frac{ML}{FI}$
- 26. The total strain energy of truss element is 500 joules and it carries an axial force of 100 KN. The extension of the member is:
 - (A) 1 mm

(B) 2 mm

(C) 5 mm

- (D) 10 mm
- 27. Castigliano's theorem falls under the category of:
 - (A) Displacement method

(B) Equilibrium method

(C) Force method

- (D) Stiffness method
- 28. A rod is stressed to 50 KN/mm² in tension. The E for the rod is 200 KN/mm². The strain energy per cubic meter will be:
 - (A) 6.25×10^9

(B) 5.0×10^9

(C) 2.5×10^9

- (D) 1.25×10^9
- 29. The rotation of the free end of a cantilever beam due to a 5 kN load is 0.001 rad. Then the deflection of the free end due to a moment of 120 kN-m is:
 - (A) 1.2 mm

(B) 2.4 mm

(C) 3.6 mm

(D) 4.8 mm

30.	The fixed end moment M_{FAB}	for the beam shown in the Fig below is:
	Α	W B

(B)
$$\frac{5 \text{W L}}{48}$$

(C)
$$\frac{11WL}{48}$$

(D)
$$\frac{WL^2}{48}$$

21	Moment	distribution	mathod is	hact o	botium	for

- (A) Indeterminate pin jointed truss
- (B) Rigid frames

(C) Space frames

(D) Trussed beam

32. The carry-over factor for a prismatic beam element with far end fixed is:

(A) 1

(B) 0.5

(C) 0.33

(D) 0.25

33. The column analogy method is applicable for the indeterminate structure having maximum redundancy equal to:

(A) 1

(B) 2

(C) 3

(D) No limitation

34. The number of unknowns to be determined in the stiffness method is equal to:

(A) Static indeterminancy

- (B) Kinematic indeterminancy
- (C) Sum of static and kinematic indeterminancy (D) None of the above

35. Which of the following sections will have maximum shape factor?

(A) Square

(B) Circular

(C) Diamond

(D) Triangle

36. The shape of influence line diagram for the bending moment at mid span in a simply supported beam is:

(A) Rectangular

(B) Triangular

(C) Parabolic

(D) Circular

37. The Muller-Breslau principle for influence line is applicable to:

(A) Simple beam

(B) Continuous beam

(C) Redundant truss

(D) All of the above

38. The variation of influence line for vertical support reaction of a statically determinate beam is:

(A) Linear

(B) Parabolic

(C) Circular

(D) None of the above

39.	The area of the influence line diagram for the cantilever beam of span "L" is:	ne reaction a	at the hinged end of a uniform propped
	(A) $\frac{L}{2}$		3L/8
	(C) $\frac{L}{4}$	(D)	L/ /8
40.	The total area of the influence line diagram for of span L is:	r shear force	e at mid span in a simply supported beam
	(A) $\frac{L^2}{8}$	(B)	Zero
	(C) $\frac{L^2}{2}$	(D)	L/ ₂
41.	A two-hinged parabolic arch is subjected to thrust at the support will:	a temperat	ure rise of t ⁰ C, then the horizontal
	(A) increase	(B)	decrease
	(C) remain same	(D)	increase or decrease
42.	The line of thrust in a Parabolic arch is:		
	(A) Funnicular Polygon	` '	Parabolic
	(C) Triangular	(D)	Circular
43.	The simply supported bending moment at the span and rise at the hinge are 12 m and 3 m r (A) 3 kN (C) 9 kN	espectively. (B)	-
44.	In approximate analysis of building frames un columns is assumed at:	nder lateral lo	oads, the point of inflection in beams and
	(A) Span / 2	(B)	Span / 3
	(C) Span/10	(D)	Span / 20
45.	The effective slenderness ratio of a cantilever (A) 0.5 L/r	r column of (B)	
	• /	, ,	
	(C) $\sqrt{2}$ L/r	(D)	2 L/r
	Where, $r = radius$ of gyration.		
46.	A 40 cm diameter circular timber column i column is:	s 4 m long (effective). The slenderness ratio of the
	(A) 10	(B)	20
	(C) 40	(D)	$20\sqrt{2}$
EIJ	-49854-A	8	

47.	A soil sample (sp. gr 2.7) has a degree of saturation	n of 4	40 % at water content of 20%. The void
	ratio of the sample is:	(D)	0.03
	(A) 1.35 (C) 5.4	` ′	0.03 None of these
	(C) 3.4	(D)	None of these
48.	Sieving is not carried out for grain sizes smaller tha	n abo	out:
	(A) 0.75 mm	` /	0.075 mm
	(C) 0.150 mm	(D)	0.20 mm
49.	If sand is in its densest state, its relative density is:		
.,.	(A) Zero	(B)	1
	(C) Less than 1		Greater than 1
50.	The ratio of the shear strength of undisturbed soil		
	(A) liquidity index	. ,	activity index
	(C) relative consistency	(D)	sensitivity
51.	Talus is a soil transported by:		
	(A) Wind	(B)	Water
	(C) Glaciers	(D)	Glacial tills
52.	Darcy's Law is applicable if a soil is:		
	(A) incompressible		homogeneous
	(C) isotropic	(D)	All of these
53.	The hydrostatic pressure on a phreatic line equals:		
	(A) Atmospheric		Less than Atmospheric
	(C) Greater than Atmospheric	(D)	None of these
54.	Liquefaction can be prevented by:		
	(A) providing filters(B) increasing the seepage length of the flow		
	(C) lowering the water table		
	(D) All of these		
55.	The horizontal Geostatic stress at a depth of 4m in	a uni	iform deposit of soil having $Kb = .5$ and
	$\gamma_b = 16.5 \text{ kN/m}^3 \text{ is}:$		
	(A) 16.0 kN/m^2	` ′	22.0kN/m^2
	(C) 33.0 kN/m ²	(D)	$66.0\mathrm{kN/m^2}$
	where Kb is Boussinesq's influence factor.		
56.	The shear stress below a point load of 2 tons at a	deptl	n 4m in a soil mass is :
	(A) Zero	-	$2 t/m^2$
	(C) 1t/m ²	(D)	None of these
EIJ.	-49854-A	9	[Turn over
		_	

57.	If the coefficient of volume change and the co 2.91×10^{-4} m ² /kN and 3.4×10^{-5} m/sec then the coefficient	ficie	nt of consolidation will be:
	(A) $11.91 \times 10^{-3} \text{m}^2/\text{sec}$	(B)	$3.62 \times 10^{-3} \text{ m}^2/\text{sec}$
	(C) $9.82 \times 10^{-4} \mathrm{m}^2/\mathrm{sec}$	(D)	$9.89 \times 10^{-9} \mathrm{m}^2/\mathrm{sec}$
58.	If instead of single drainage, the number of draic compression will be:	nage	faces are increased to two, the rate of
	(A) 4 times slower	(B)	2 times slower
	(C) 4 times faster	(D)	None of the above
59.	After the complete consolidation of a soil mass, the	e effe	ctive stress becomes equal to:
	(A) the pore water pressure		the neutral stress
	(C) Both of these	` ′	None of these
60.	Sheep foot roller is ideally suited for the compaction	on of :	
	(A) cohesive soils		cohensionless soils
	(C) both types of soils	` ′	None of these
61.	An unconfined compression test is good for:		
	(A) Granular soils	(B)	Saturated cohesive soils
	(C) Both granular and cohesive soils	` ′	None of these
	(C) Both grantial and conesive sons	(D)	None of these
62.	A deviatoric stress is given by:		
	(A) $\sigma_1 + \sigma_3$	(B)	$\sigma_1 - \sigma_3$
	(C) $\frac{\sigma_1 + \sigma_3}{2}$	(D)	
63.	The maximum pressure intensity which a soil can c	arry v	without shear failure is known as its:
	(A) safe bearing capacity		
	(C) net safe bearing capacity		net ultimate bearing capacity
64.	The bearing capacity factor for local shear failure,	are de	etermined with respect to :
	(A) average c and φ parameters		increased c and reduced φ parameters
	(C) decreased c and increased φ parameters		reduced c and ϕ parameters
	(c) decreased c and mercased \(\psi \) parameters	(D)	reduced e and y parameters

65. The viscosity of the grout pumped into weak soil depends directly on the :

(A) specific gravity of the soil

(C) permeability of the soil

(B) shear strength of the soil

(D) degree of saturation of the soil

	graph:		
	(A) Directly		
	(B) By drawing tangents to the curve at the initial a	and fi	nal points
	(C) By the secant method		
	(D) Simply at 0.2% of the maximum settlement		
67.	Pile foundations are provided to:		
	(A) carry loads	(B)	resist horizontal and uplift forces
	(C) compact a loose cohesionless deposit	(D)	All of these
68.	The efficiency of pile group depends on:		
	(A) soil type	(B)	method of pile installation
	(C) pile spacing	(D)	All of these
69.	The method of slices was first suggested by:		
	(A) Taylor	(B)	1
	(C) Fellineous	(D)	Terzaghi
70.	A slope is considered infinite when:		
	(A) its length in the third dimension is infinite		
	(B) the slant height is very large		
	(C) the base of embankment is very long		
	(D) All of these		
$2c \cot \alpha$			
71.	To have zero active pressure intensity at the top of uniform surcharge of intensity:	a wa	ll in cohesive soil, one can apply a
	(A)	(B)	2c tan α
	(C) $-2c \cot \alpha$	(D)	$-2c \tan \alpha$
72.	An unsupported vertical cut may be made in cohes	ive so	oil to a height of:
	(A) $\frac{2c}{\gamma} \tan \left[45 + \frac{\phi}{2} \right]$	(B)	$\frac{2qu}{\gamma} \tan \left[45 + \frac{\phi}{2} \right]$
	(C) $\frac{4qu}{\gamma} \tan \left[45 - \frac{\phi}{2} \right]$	(D)	$\frac{4c}{\gamma} \tan \left[45 - \frac{\phi}{2} \right]$
73.	The pressure diagram below the dredge line of	an a	anchored sheet-pile wall embedded in
	cohesionless soil is:		
	(A) rectangular	(B)	triangular
	(C) triangular then rectangular	(D)	parabolic

66. In a plate load test, the ultimate load is estimated from the load-settlement curve on a log-log

74.	Dynamic Magnification factor is the ratio of:		
	(A) static force to dynamic force	(B)	dynamic force to static deflection
	(C) dynamic deflection to static deflection		dynamic force to static force
	•		•
75.	The Westergaard equations are used for analysis of	f:	
	(A) clayey soils	(B)	sedimentary soils
	(C) black cotton soils	(D)	cohesionless soils
76.	Under reamed piles are normally:		
	(A) Precast piles	(B)	Bored piles
	(C) Driven piles	(D)	Sunken piles
77.	A lubricant 100 times more viscous than water wo	ıld ha	ave a viscosity (in Pa-s):
	(A) 0.01	(B)	0.1
	(C) 1	(D)	10
78.	Kinematic Viscosity and specific gravity of a certain	ı liqu	id are 5.58 stokes and 2 respectively. The
	viscosity of liquid in S.I. unit are:		
	(A) 1.116Ns/m^2	` ′	1.315 Ns/m^2
	(C) 1.489 Ns/m^2	(D)	1.652Ns/m^2
79.	In the laminar boundary layer flow over a flat plate	, the 1	ratio (δ/x) varies as :
	(A) Re	(B)	$\sqrt{\text{Re}}$
	(C) 1/Re		Re ^{-1/2}
	where δ is the boundary layer thickness and X is the	` /	
	of flow.		
80.	The turbulence in which the products and squares o	f the	velocity component and their derivatives
	are independent of direction is called:		•
	(A) isotropic	(B)	potential
	(C) anisotropic	(D)	laminar
81.	The laminar boundary layer thickness varies as:		
	(A) $x^{-1/2}$	(B)	$X^{1/2}$
	(C) $x^{1/7}$	(D)	$X^{6/7}$
82.	For psedoplastic fluid, flow consistency index is:		
	(A) < 1	(B)	= 1
	(C) > 1	(D)	∞

83.	3. If the fluid entering the pipe is turbulent and the velocity in the tube is above critical the transiti length is:			
	(A) 40 to 50 times the pipe diameter	(B)	10 to 30 times the entering velocity	
	(C) 20 to 30 times the pipe diameter	(D)	None of the above	
84.	If the pressure on the surface of an oil (s.g = 0.8) ta of 2.5 m is:	ınk is	0.1 kg/cm ² , the pressure head at a depth	
	(A) 1 m of water	(B)	2 m of water	
	(C) 3 m of water	(D)	3.5 m of water	
85.	A vertical rectangular plane surface is submerged in 1.5 m and 6.0 m respectively below the free surface will be at a depth of:		<u> -</u>	
	(A) 3.75 m		4.0 m	
	(C) 4.2 m	(D)	4.5 m	
86.	A jet strikes a stationary plate normally with a velocity N. The power obtained, in kW is:	·	-	
	(A) 0.96	, ,	9.4	
	(C) Zero	(D)	958	
87.	Which of the following is a dimensionless number '		Di	
	(A) Manning's coefficient "n"		Pipe friction factor "f"	
	(C) Chez's coefficient "C"	(D)	Hazen-William coefficient C_H	
88.	The momentum correction factor " β " for laminar fle			
	(A) 1.5	, ,	2.0	
	(C) 1.67	(D)	1.33	
89.	The continuity equation is based upon the principle	of:		
	(A) Conservation of energy	` /	Conservation of momentum	
	(C) Conservation of mass	(D)	None of these	
90.	For a hydraulically efficient rectangular channel of		<u>=</u>	
	(A) 4.0 m	, ,	8.0 m	
	(C) 1.0 m	(D)	2.0 m	
91.	For an error of 10% in the measurement of head ov will be:	er a l	proad crested weir, the error in discharge	
	(A) 10 %	` ′	5 %	
	(C) 15 %	(D)	25 %	

€2.	The	flow will be in supercritical state in the following	g pro	files:
	(A)	M_3 , S_3 and M_1	(B)	M_2 , S_1 and M_3
		S_2 , S_3 and M_3		S_1, S_2 and S_3
		2' 3 3		1 2 3
93.	In a	Sutro weir, discharge is proportional to:		
		$H^{1/2}$	(B)	Н
	(C)	$H^{3/2}$	(D)	$H^{5/2}$
	(0)		(_)	
94.	A pu	ump is required to deliver 150 L/s at a head of 45	5 m v	when running at 1750 r.p.m. The specific
	-	ed of the pump is:		Sur exercise control of the control
		17.4	(B)	39.0
	. ,	89.0		1233.0
	(C)	67.0	(D)	1233.0
95.	Wate	er is pumped through a pipeline to a height of 1	0 m a	at the rate of 0.1 m ³ /s frictional and other
	mino	or losses are 5 meter. Pumping power required,	in k	W is:
	(A)	14.70	(B)	9.80
	` ′	20.0	` ′	13.3
96.	The	ory of probability is applied to :		
	(A)	accidental error only	(B)	conditional error
		both accidental and cumulative	(D)	residual error
	` /		()	
97.	The	shrinkage factor of an old map is 24/25 and R	.F is	1/2400 then the corrected scale for the
	map	is:		
	(A)	1/2400	(B)	1/2500
	(C)	1/600	(D)	1/60000
98.	If the	e length of a chain line along a slope of " α " is '	<i>'l</i> '' th	e required slope correction is:
	(A)	$2l \cot^2 \alpha/2$	(B)	$2l\sin^2\alpha/2$
	(C)	$l \tan^2 \alpha/2$	(D)	$l\cos^2\alpha/2$
99.	Whi	ch of the following is the most precise instrumer	nt for	measuring horizontal distances?
	(A)	Metallic Tape	(B)	Steel Tape
	(C)	Tacheometer	(D)	Tellurometer
100.	The	whole circle bearing of a line, whose quadranta		
	(A)	19°	(B)	199°
	(C)	160°	(D)	None of the above
101.		value of dip at the magnetic pole is:		
	(A)		(B)	45°
	(C)	90°	(D)	None of these

102.	02. The difference between face left and face right observations of a theodolite is , the error is :		
	(A)	(B)	
	(C)	(D)	
103. The closing error can be balanced by:			
	(A) Bowditch rule	` ′	Transitrule
	(C) Working accurately latitudes	(D)	Either (A) or (B) as applicable
104.	4. If "N" is the number of stations and the least count of the instrument is , then the limit on the angular error of closure in traversing should not be:		
	(A) < 20 N	(B)	> 20 N
	(C) < 20	(D)	$> 20\sqrt{N}$
105.	5. What will be the correction for curvature for a distance of 1000 m?		
	(A) .0673 m	(B)	.0785 m
	(C) .0568 m	(D)	None of these
106. The reading on a 4.0 m staff at a point is observed as 2.895 m. If the staff was 8 cm out of the plumb line, the correct reading should have been:			
	(A) 2.8800 m	(B)	2.8937 m
	(C) 2.8600 m	(D)	2.9937 m
107. If the degree of a curve is 1° and if chain length is 30 m, then the radius of the curve is equal to:			
	(A) 5400 m	(B)	1720 m
	(C) $\frac{1720}{\pi}$ m	(D)	5400
	(C) ${\pi}$ m	(D)	$\frac{5400}{\pi}$ m
108. The long chord and tangent length of a circular curve of radius R will be equal if the angle of deflection			
	(A) 30°	(B)	
	(C) 150°	(D)	120°
109. If the radius of a circular curve is five times the length of a transition curve then the spiral angle is given by:			
	(A) 1/5 rad	` ′	1/10 rad
	(C) 1/20 rad	(D)	1/40 rad
110. The resultant of two forces P and Q is R. If Q is doubled, the new resultant is perpendicular to P, (A) $P = R$ (B) $Q = R$			
	(A) P = R	, ,	
	(C) $P = Q$	(D)	None of the above is correct

- 111. The mass moment of inertia of a rectangular plate of mass M and sides a and b about an axis perpendicular to plate through its centre is:
 - (A) $\frac{M}{3}(a^2+b^2)$

(B) $\frac{M}{4}(a^2+b^2)$

(C) $\frac{M}{12}(a^2+b^2)$

- (D) $M\left(\frac{a^2}{4} + \frac{b^2}{12}\right)$
- 112. Two circular discs of same weight and thickness are made from metals having different densities. Which disc will have the larger rotational inertia about its central axis?
 - (A) disc with larger density

- (B) disc with smaller density
- (C) both discs will have same rotational inertia
- (D) None of the above
- 113. For a body subjected to hydrostatic static state of stress, the shear stress on a plane inclined at an angle of 45° with the horizontal will be:
 - (A) maximum

(B) minimum

(C) zero

- (D) 50% of hydrostatic pressure
- 114. For the flow to be definitely laminar in a pipe, the value of Reynold's number should be:
 - (A) < 2000

(B) 2500

(C) 5000

- (D) > 5000
- 115. For critical flow in a rectangular channel for a discharge per unit length of 25 cumec, the critical depth will be:
 - (A) $2.1 \, \text{m}$

(B) 1.5 m

(C) 4 m

- (D) 2.75 m
- 116. The intensity of pressure developed by surface tension of 0.0075 Kg/m in a droplet of water of 0.075 mm diameter is:
 - (A) 0.08 Kg/cm²

(B) $0.06 \, \text{Kg/cm}^2$

(C) 0.04 Kg/cm^2

- (D) 40 Kg/cm²
- 117. If there are n pipes of same diameter d laid in parallel in place of a single pipe of diameter D,
 - (A) $d = \frac{D}{n^{2/5}}$

(B) $D = \frac{d}{n^{2/5}}$

(C) $d = \frac{D}{n^{2/3}}$

(D) $d = \frac{D}{n^{1/5}}$

118. If F_r is the Froude number for a flow in a triangular channel, then the Froude number for same velocity and same depth of flow in rectangular channel will be:

(A) F_r

(B) $\sqrt{2} F_r$

(C) $\frac{F_r}{\sqrt{2}}$

(D) $\frac{F_r}{\sqrt{3}}$

119. Shape factor is a property which depends:

- (A) only on the ultimate stress of the material
- (B) only on the yield stress of the material
- (C) both on yield and ultimate stress of material
- (D) only on the geometry of the section

120. The rigid-jointed plane frame shown in figure will:

- (A) sway to left
- (B) sway to right
- (C) not sway at all
- (D) may sway to left or right depending upon the magnitude of Udl

ROUGH WORK

EIJ-49854-A

ROUGH WORK